30年前的“CNN梦”在这颗芯片降生,能效比超Tesla10倍

2019年01月11日 作者:糖悦之果飞

30年前,基于CNN(Cellular Neural Network)的定制化人工智能芯片的想法在美国加州大学伯克利分校的实验室里萌芽。

30年后,这个想法终于在硅谷的华人AI芯片创业公司Gyrfalcon Technology里得到实现(以下简称GTI)。

目前,这家成立不到两年的公司已经吸引了全球前五大手机芯片公司中的三家大客户。

GTI合作客户覆盖手机、安防、机器人、工业和IoT领域,且已有量产产品出货,其首个数据中心项目在2018年落地深圳。

GTI的芯片故事最早可以追溯到31年前。

1988年,加州大学伯克利分校的一位名叫杨林的博士和Leon Chua提出CNN(Cellular Neural Network)理论,并同年在IEEE上发表论文《Cellular Neural Networks: Theory》、《CellularNeural Networks: Applications》。杨林团队还基于该理论研发出一颗20*20矩阵的并行模拟电路芯片。

31年后,当年的“CNN”逐步演化成当下的卷积神经网络CNN和循环神经网络RNN,而开辟先河的两篇论文的引用数也分别达到了3871和1462。

更让人兴奋的是,当年那颗停留在实验室里的并行矩阵计算芯片终于在工业界落地——由杨林和董琪联合创办的AI芯片公司Gyrfalcon Technology(以下简称GTI)进一步迭代和优化,并衍生出多条产品线。

他们野心勃勃,希望借此在日益拥挤的AI芯片赛道上拔得头筹。

1月9日消息(美国时间),CES2019期间,GTI带来三款AI加速芯片,分别是面向AI终端的Lightspeeur®2801S、面向数据中心/云端的Lightspeeur®2803S 、以及全球首款采用MRAM(磁阻式随机存取记忆体)技术的TheLightingpee®2802M。

活动现场,GTI数位联合创始人充分展示了公司多项关键核心技术,包括可同时兼备训练和推理性能、可实现计算存储一体化的独创APiM架构、采用MCMC网络代替常见的SDG模型训练方法。

GTI强调其系列芯片在AI加速方面的高性能、低功耗、高性价比、小尺寸等特性,使用其开发平台能够实现非常快速和有效,支持最大规模的部署。

此外,MRAM(磁阻式随机存取记忆体)技术也颇值得一提。

眼下主流的储存器大致可分为两类:一类以传统内存DRAM、HM为代表,读写速度快但具有易失性(断电数据易丢失),另一类以传统闪存Flash为代表,具有非易失性但读写速度慢。

1 2 3 4

相关文章