盘点2018年不可错过的30个激动人心的机器学习项目

2018年09月07日 作者:糖悦之果飞

在过去的一年里,我们比较了近8800个开源的机器学习项目,并从中评选出了前30名(0.3%的机会入选)。

这是一个极具竞争力的榜单,它仔细挑选了2017年1月到12月之间发布的最好的开源机器学习库、数据集和应用程序。Mybridge AI将项目的受欢迎程度、参与度和时效性等指标纳入评估标准来判断项目的质量。这些项目在Github上收藏量(获得的星数)的平均值是3558,这个数字足以让你对这些项目的质量有个大致了解。

开放源码项目对数据科学家很有用。而你也可以通过阅读源代码这一方式来学习,并在这些现有项目的基础上构建一些新的内容。给自己足够的时间去尝试一下这些去年你可能错过的激动人心的机器学习项目吧。

第1名:FastText

用于快速文本显示和分类的库,Github收藏量11786星。项目隶属于Facebook研究院。

第2名:Deep-photo-styletransfer

论文“深度照片风格转换”的代码和数据,Github收藏量9747星。项目隶属于Fujun Luan,康奈尔大学博士。

第3名:face_recognition

世界上最简单的用于Python和命令行的面部识别API,Github收藏量8672星。项目隶属于Adam Geitgey。

第4名:Magenta

利用机器智能进行音乐和艺术创作的项目,Github收藏量8113星。

第5名:Sonnet

基于Google TensorFlow 的神经网络库,Github收藏量5731星。项目隶属于来自Deepmind的Malcolm Reynolds。

第6名:deeplearn.js

用于网络的硬件加速机器智能库,Github收藏量5462星。项目隶属于来自Google Brain的Nikhil Thorat。

第7名:fast-style-transfer

基于TensorFlow的图片与视频风格转换工具,Github收藏量4843星。项目隶属于来自MIT的Logan Engstrom。

第8名:Pysc2

星际争霸2学习环境,Github收藏量3683星。项目隶属于来自Deepmind的Timo Ewalds。

1 2 3

相关文章