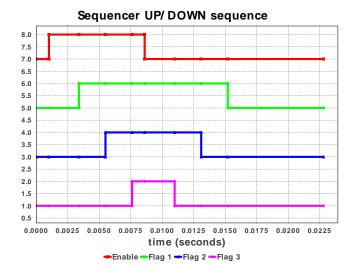


WEBENCH® Design Report

VinMin = 14.0V VinMax = 22.0V Vout = 3.3V Iout = 2.0A Device = LM3881MM/NOPB Topology = SEQUENCER Created = 9/28/16 10:09:32 PM BOM Cost = \$0.54 BOM Count = 5 Total Pd = 0.0W


Design: 4807241/1 LM3881MM/NOPB

Design 1 - LM3881MM/NOPB

Electrical BOM

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
. Cadj	Yageo America	CC0805KRX7R9BB222 Series= X7R	Cap= 2.2 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
2. Rflag1	Vishay-Dale	CRCW0402100KFKED Series= CRCWe3	Res= 100.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
8. Rflag2	Vishay-Dale	CRCW0402100KFKED Series= CRCWe3	Res= 100.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rflag3	Vishay-Dale	CRCW0402100KFKED Series= CRCWe3	Res= 100.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
5. U1	Texas Instruments	LM3881MM/NOPB	Switcher	1	\$0.50	S-PDSO-G8 36 mm ²

Operating Values

#	Name	Value	Category	Description
1.	BOM Count	5	General	Total Design BOM count
2.	FootPrint	52.0 mm ²	General	Total Foot Print Area of BOM components
3.	Total BOM	\$0.54	General	Total BOM Cost
4.	Total Pd	240.0 μW	Power	Total Power Dissipation
5.	Flag Voltage	3.0 V		Flag Voltage
6.	Flag1 Down delay (From EN high to low)	6.6 ms		Flag Delay
7.	Flag1 Up delay (From EN low to high)	2.376 ms		Flag Delay
8.	Flag2 Down delay (From EN high to low)	4.488 ms		Flag Delay
9.	Flag2 Up delay (From EN low to high)	4.488 ms		Flag Delay
10.	Flag3 Down delay (From EN high to low)	2.376 ms		Flag Delay
11.	Flag3 Up delay (From EN low to high)	6.6 ms		Flag Delay
12.	Flags Used	2.0		Flags Used
13.	Total Flags	3.0		Total Flags
14.	Vcc	3.0 V		Vcc

Design Inputs

= 0 - 13.1 ··· 0 - 13.1							
#	Name	Value	Description				
5.	base_pn	LM3881	Base Product Number				

Design Assistance

1. LM3881 Product Folder: http://www.ti.com/product/LM3881: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.