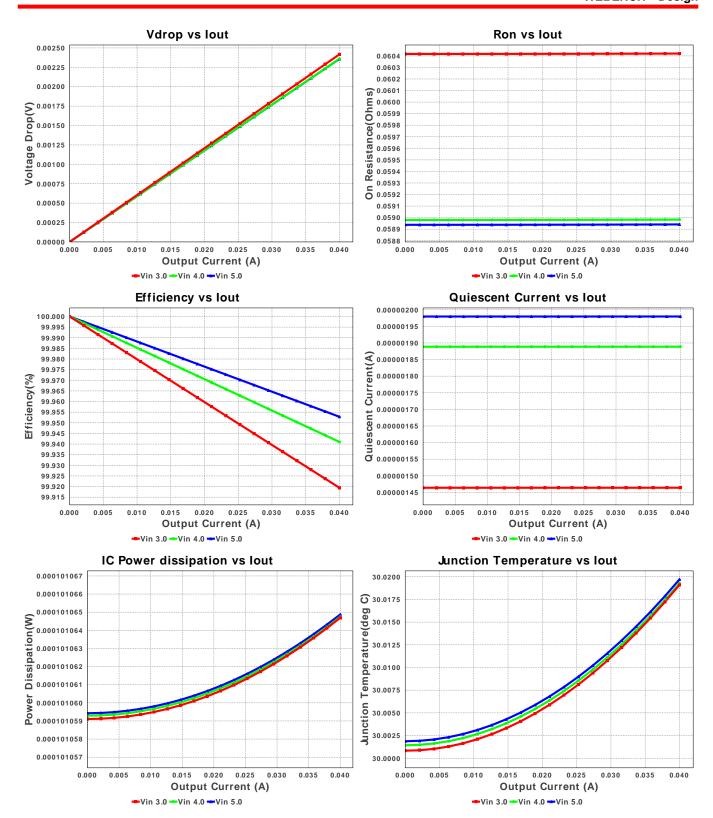


WEBENCH® Design Report

VinMin = 3.0VVinMax = 5.0VVout = 5.0Vlout = 0.04A

Device = TPS22912CYZVR Topology = Load Switch Created = 9/22/16 6:40:50 PM BOM Cost = \$0.25 BOM Count = 3 Total Pd = 0.0W


Design : 4799898/7 TPS22912CYZVR Design 7 - TPS22912CYZVR

1. To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a discharged load capacitor or a short circuit, it is generally recomended to have a capacitor of at least Cload*10 between VIN and GND.

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cin	MuRata	GRM219R60J106KE19D Series= X5R	Cap= 10.0 uF ESR= 4.324 mOhm VDC= 6.3 V IRMS= 2.8728 A	1	\$0.02	0805 7 mm ²
2.	Cout	MuRata	GRM155R60J104KA01D Series= X5R	Cap= 100.0 nF VDC= 6.3 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
3.	U1	Texas Instruments	TPS22912CYZVR	Switcher	1	\$0.22	S-XBGA-N 0 mm ²

Operating Values

#	Name	Value	Category	Description
1.	BOM Count	3	General	Total Design BOM count
2.	FootPrint	35.0 mm ²	General	Total Foot Print Area of BOM components
3.	Inrush Current	80.0 mA	General	User entered Inrush Current
4.	Pout	199.906 mW	General	Total output power
5.	Total BOM	\$0.25	General	Total BOM Cost
6.	Cload Act	200.0 nF	Op_Point	Cload (Actual)
7.	Ron Act	58.941 mOhm	Op_Point	Ron (Actual)
8.	SlewRate Act	4.5 mV/us	Op_Point	Change in volt per unit time
9.	Trise Act	888.542 µs	Op_Point	Rise time
10.	Vdrop Act	2.358 mV	Op_Point	Voltage drop

#	Name	Value	Category	Description
11.	DC Load Fall Time	54.905 μs	Op_point	Fall time calculated with the DC load attached. Considering only CLoad + Cout and RLoad
12.	DC Load Inrush Curre	nt899.927 µA	Op_point	Inrush current calculated with the DC load connected
13.	Efficiency	99.953 %	Op_point	Steady state efficiency
14.	IC Tj	30.02 degC	Op_point	IC junction temperature
15.	IOUT_OP	40.0 mA	Op_point	lout operating point
16.	No Load Fall Time	NaN s	Op_point	, •,
17.	No Load Inrush Curre	nt 899.927 µA	Op_point	Inrush current calculated with the DC load not connected
18.	VIN_OP	5.0 V	Op_point	Vin operating point
19.	Total Pd	104.204 μW	Power	Total Power Dissipation

Design Inputs

#	Name	Value	Description
1.	lout	40.0 m	Maximum Output Current
2.	lout	40.0 m	Maximum Output Current
3.	VinMax	5.0	Maximum input voltage
4.	VinMin	3.0	Minimum input voltage
5.	base_pn	TPS22912C	Base Product Number
6.	cload	100.0 n	Minimum load capacitance user requirement
7.	inrush_Current	80.0 m	Inrush current
8.	source	DC	Input Source Type
9.	Та	30.0	Ambient temperature
10.	vdrop_max	200.0 m	Maximum voltage drop user requirement

Design Assistance

1. TPS22912C Product Folder: http://www.ti.com/product/tps22912c: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.