解剖构成智能工厂的感官、肢体、神经系统和大脑

2019年05月10日 作者:satoll

工业4.0大幅变革传统生产线,新时代智能工厂应运而生。智能工厂将面对终端智能化、连接泛在化、计算边缘化、网络扁平化、服务平台化及安全提升化等技术发展趋势,需要解决智能感知控制、全面的互联互通等多个方面的问题。本文将传感器比作智能工厂的感觉器官,将机器人比作智能工厂的四肢,将AI系统比作计算大脑,介绍了实现智能工厂所需的关键技术,并指出边缘和云端的数据安全性将是智能工厂面对的最大挑战。

 

随着“工业4.0”和“中国制造2025”等国家战略的推进,智能制造逐渐从概念宣传发展到实施执行阶段,而工业物联网(IIoT)、人工智能、大数据、机器人、云计算和增强现实等先进技术也不断出现,数字和物理领域的融合进一步促进了智能制造的兴起和发展。

“智能制造的主线是智能生产,而智能生产的主要载体是智能工厂。”中国工程院院长周济先生简洁明了地阐述了智能生产、智能制造和智能工厂三者之间的关系。智能工厂是一个完全连接的灵活的制造系统,能根据动态市场需求整合供应链和生产线,并在需要时生产出个性化的定制产品。

根据权威市场机构的预测,到2025年全球智能制造市场规模将达到3952亿美元。Altizon的2017年智能制造报告指出,在工业制造业中,智能制造有可能将直接人工成本和间接成本降低5~10%。由此可见,智能制造的价值和未来市场发展都很有潜力。那么,实现智能工厂需要哪些技术呢?

智能工厂的实现需要六大关键技术

建设智能工厂的最终目标是实现智能制造,而智能制造的关键技术也就是搭建智能工厂这个载体的核心技术。来自Vero Solutions的信息图示出了驱动和实现智能制造的六项创新技术。

图1:驱动和实现智能制造的六种顶级创新技术(来源:Vero Solutions)

 

1. 3D打印

过去需要数月的时间设计及组装产品,并与供应商进行沟通,有了3D打印技术,制造过程变得更加快捷,所需时间大大减少。

除了传统的3D打印材料,如塑料、玻璃和陶瓷外,还有电子元件及环保材料。3D打印的灵活性及优点可降低使用新材料引起的总费用,并且由于是现场按需生产产品,因而不必担心库存空间不够。

2. 增强现实及可穿戴设备

管理人员通过监控疲劳程度,可以提高员工的安全性,减少受伤的风险,并提高生产力。为进一步提高安全性,还可利用可穿戴技术来操作机器,使员工在工作时远离危险区域。

可穿戴技术可以跟踪员工的工作速度,检测系统效率。

3. 云计算平台

利用工业物联网(IIoT)等云计算平台,制造商实现了互连及内部交换信息,供应商与分销商之间也能够增强了解。如果将智能工厂比喻为人体的话,IIoT相当于神经系统。

基于云计算的系统实现了整个开发过程的协合,使员工能够将更重要的任务排到更高的优先级,从而加快新系统的开发进程。

质量管理面板将全球的制造场地连接到一起,并将销售结果直接报告给现场管理员。

4. 伪造检测技术

就不同行业的伪造严重程度而言,制造业排第三位。制造商的平均损失是19.4万美元,除此之外,伪造还会影响公司的总生产率,导致员工信任度下降并失去客户的信任。

深度神经网络(DNN)可用于识别交易中的伪造,从在线交易中收集数据并进行建模,使制造商能够标记并预测未来交易中可能出现的伪造风险。

5. 位置检测技术

跟踪与追溯资产位置及状态已成为制造中的关键一环。自工业4.0和智能工厂一开始,制造业就采用了先进的定位技术。

商品及货物将通过各种系统,如供应链管理、ERP、MES及其它信息技术系统进行连续跟踪,以提高整体效率。

射频识别(RFID)、卫星导航系统及条码技术可监控商品的移动。基于位置的服务如GPS或移动ID可为室外应用提供地理定位方案。

6. 智能传感器

仍以人体为例,智能传感器相当于人体的各种感觉器官,用于采集工业环境下各种温度、湿度、压力、空间移动和位置等信息。早在2013年业界就预测供应链中会使用超过2000万个传感器。据Gartner预测,到2025年将使用高达250亿个传感器。

智能传感器产生极复杂的数据,这些数据成为自动及智能控制的基础。有了智能传感器,便不再需要远程处理,提高了智能机器的生产率及效率。

智能传感器对于仓库管理特别有用,能够监控温度,检查货物是否出现问题,并记录一些出现问题的参数。

工业物联网(IIoT)构成智能工厂的神经系统

工业物联网的发展给制造自动化及智能化提供了新的机遇。

智能工厂追求人、机、料、法、环的智能化的高度协调及高效利用。除了智能设备和智能生产及执行系统,还需要考虑环境、厂务设施等因素,大量的传感器用来控制或监控水、电、气、尘埃颗粒、温度、湿度等。但各种传感器分散、异构、数据格式不统一,甚至是移动的,利用工业物联网的架构进行智能化协调是一个很好的途径。
工业物联网平台是将具有感知、监控能力的各类采集或控制传感器或控制器,以及泛在技术、机器对机器(M2M)通信、机器学习和基于云的分析等技术不断融入到工业生产的各个环节,通过收集、分析来自新增和原有设备的数据,提高效率并获得竞争优势。通过强大的管理运算功能,能够:

  • 改善生产过程透明度。利用数据记录和通信功能,使设备状态一目了然,从而提高生产力;
  • 延长设备寿命,降低成本;
  • 拓展控制功能。用设备端的控制功能替代中控室的中央控制,实现分散化控制。

例如,AI工程和自动化系统方案提供商BISTel公司的Cloud IoT平台便结合了软件和硬件,可以提供存储、计算、安全、开发工具及其它许多常见功能,提高了质量和工程生产力,实现了运营效率的提升。

传感器构成智能工厂的感官网络

现代工业系统的关键部件是传感器,它将数据发送给控制器、监视器以及让工厂运作起来的其它设备。传感器在现代工厂中扮演多种角色,除了为过程控制提供数据,还帮助进行质量评估、资产跟踪、甚至保证工人的安全。为了满足不同的目的,传感器的种类很多,最常见的有照明、温度、运动、位置、存在、视觉、力、流动和化学成分等传感器类型。实际上,每一种不同的过程或环境条件都有适合其测量的类型。

用于数据采集和处理的微机电系统(MEMS)是一个从3D陀螺仪、加速度计、磁力计和振荡器,到用于热、压力、湿度以及其它传感元件的庞大传感器品类。MEMS温度、湿度传感器可用于环境条件的检测,MEMS加速度计可用来监测工业设备的振动和旋转速度。

例如,ADI的MEMS加速度计在数字MEMS振动传感器等器件中集成了嵌入式RF收发器,是集信号处理和通信功能于一体的解决方案。这类可编程器件的功能包括:

  • 定期自动唤醒、捕获时域振动数据;
  • 对数据记录执行快速傅里叶变换(FFT);
  • 对FFT结果进行用户可配置的频谱分析;
  • 通过高效的无线传输线路提供简单的通过/失败结果;
  • 存取数据和结果,然后返回休眠状态。

高精度的MEMS加速度计和陀螺仪可以为工业机器人的导航和转动提供精确的位置信息。这些MEMS传感器将数据馈送到一个神经网络,用于视觉和其它感知处理,帮助工厂机器人“理解”其所处的环境,以及周遭世界中是否发生了某些变化。

图2:工业中使用的各种传感器需要连接到物联网。(图片来源:Postscapes)

图3:将传感器系统引入IIoT需要复杂的硬件和软件生态系统。(图片来源:Disruptive Technologies)

 

机器人组成智能工厂的四肢

工业机器人是智能制造的重要组成部分。

在智能工厂中,勿需大型生产设施,也不必拥有庞大的供应线和大量的劳动力,只是利用更紧凑、更高效的工业机器人,便可降低运输成本和交付周期。

工业机器人通过更加集成的制造流程,利用内置传感器、数据记录以及基于云的实时启发和计算,可以进行稳定的改进和调整,从而改善生产。利用增强型机器学习和人工智能(AI)系统,智能制造技术可以学习如何更快地生产产品,减少了浪费,避免了复杂的设置。

图4:新的人机协作和交互方式使员工能够专注创造性工作和价值增值任务。(图片来源:英飞凌)

1 2

相关文章