facebook的“硬件开源”启示录

2019年03月20日 作者:satoll

facebook与硬件“相爱相杀”的故事大家恐怕听到耳朵起茧了。不过,前不久facebook在开放计算项目(OCP)峰会上官宣的新硬件开源项目,依然引起不小的关注。

不仅因为这是个“组合大礼包”,包括了面向训练的Zion、面向推理的Kings Canyon及面向视频转码的Mount Shasta。更重要的是,这是facebook首次明确地表达出了从消费硬件到基础设施的转型姿态。

这张升级后的硬件“名片”,被加上了“产业基础架构”几个大字,之于facebook自然意义重大。不过,它也并不那么突出,因为谷歌、IBM、苹果等在内的巨头们也相继加入了硬件开源的大军,有的甚至比facebook还早。一场与智能基础硬件有关的战意,似乎在这个春天悄然而至。

我们不妨以这次大动作为切入点,看看facebook能否借着2.0版硬件梦一战翻身?

01.AI三件套:facebook的2.0版硬件梦

先来了解一下,facebook究竟放出了哪些让业界为之震动的“下一代”神器。一句话总结,就是针对深度神经网络运算的“基础设施三件套”,可以为中小企业的AI梦供能。其中主要包括了三个模块:

1.能够进行大规模神经网络计算的训练平台Zion

Zion采用了facebook全新的OAM模块(OCP Accelerator Module),能够高效处理包括CNN、LSTM和SparseNN在内的一系列神经网络。配有两个高速结构,能够有效地使用可用的聚合内存容量,使得更频繁访问的数据驻留在加速器上,而访问频率较低的数据驻留在带CPU的DDR内存。

从而为合作伙伴(目前有AMD、Haban、GraphCore和NVIDIA等)提供高容量高带宽的存储、灵活且高速的互连,以及强大的计算能力。

2.能够执行推理任务的AI服务器Kings Canyon

和传统的CPU服务器不同,facebook开源的AI服务器由M.2 Kings Canyon加速器和连接到Twin Lakes服务器的Glacier Point v2载卡组成。

其中,每个Kings Canyon模块包含了能够执行INT8半精度运算的推理ASIC芯片和其它支持组件,可以通过专门的编译器将图形转换为可以在这些加速器上执行的指令,从而不受供应商特定硬件的限制,为机器学习加速器生成高度优化的代码。

3. 可以定制转码的Mount Shasta

视频是facebook的核心业务之一,每天大约有7500万人访问相关产品。为此,facebook为不同的网络环境划分了多种分辨率和比特率的输出质量,这就是视频转码。

而其开源硬件Mount Shasta,就是一个由多个GPv2组成的高密度几何体,每块Glacier Point v2(GPv2)载卡都安装了能够高效输出视频编码的ASIC,这样就可以将视频转码工作负载平衡分布到不同数据中心位置的异构硬件上。

facebook还配备了通用的界面和框架,以便于各种机器学习和视频空间供应商的能够顺滑使用。

总体来看,Zion、Kings Canyon和Mount Shasta这“AI硬件三剑客”,剑指当前爆发式增长的AI训练、AI推理和视频转码方面的需求,并试图将facebook长期以来积累的技术优势和硬件招牌相结合,以开放的姿态,打造出一块能够影响未来产业结构的“金字招牌”。

facebook为何对硬件如此执着?

02.屡败屡战:facebook熊熊燃烧的硬件之魂

facebook和扎克伯格一直对硬件爱得深沉。其硬件的发展之路也执着地经历了三个历史阶段:

阶段一:与谷歌打擂台的服务器之争

早在2009年,facebook就以“又一个谷歌”为目标,开启了一场关于硬件的擂台赛。从Google挖来了硬件工程师Amir Michael,主管硬件设计。2010年,又成立了第一个自建数据中心。

2011年4月,facebook发起了开放计算项目(Open Compute Project,OCP),开源了其包括数据中心、定制服务器在内的一系列硬件设计。

作为一个开源的硬件项目,OCP成为facebook向硬件厂商和社区化运营的关键载体。但随着在移动云时代的逐渐掉队,facebook只好将目光转移到了消费硬件上,以挽救华尔街投资人日益流失的心。

1 2

相关文章