本网页已闲置超过3分钟,按键盘任意键或点击空白处,即可回到网页

基于BME680的智能家居控制中心

发布时间:2022-05-24
分享到:

基于BME680的智能家居控制中心

发布时间:2022-05-24
分享到:

该项目具有检测室内环境数据和发送电子邮件、开灯按钮、体感照明屏等功能。

经过不断的踩坑学习,初代简易智能家居中控系统已经完成,大部分功能已经完成,但是有些功能WIO终端没有实现。一方面是因为代码量太大,会给WIO终端带来很大的“压力”;另一方面,我的技术还不够,还得继续学习,寻找解决方案。

首先介绍一下我最初的想法:

WIO终端是一款高度集成的开发板。它配备了液晶显示屏、三个按钮、一个五向开关、麦克风、扬声器、加速度传感器、红外发射器等,甚至可以与树莓派和 Jetson nano 结合使用。作为家居的“大脑”,这些硬件非常实用。因此,在智能家居的中控系统中,我选择WIO终端作为这个系统的核心。

未来,家里应该有一个智能管家。这个智能管家就是我现在做的简单版。有了它,您就可以在家中获取准确实时的温度、湿度、光照强度等数据。不仅如此,它还像一个“万能”遥控器,可以帮助你控制家中的电器。当然,它应该像智能音箱一样,能够理解我们给它的指令并响应我们!

提前准备
在这个项目的过程中,我第一次使用了开发板WIO终端:

不知为何,在WIO终端上使用grow-temperature 湿度压力气体传感器时,接收不到数据,只好转身实现:

  • 使用Django搭建一个简单的数据中心(基于Grove——温度湿度压力气体传感器)

重回正轨,实现数据展示的主要功能:

  • 使用WIO终端通过HTTP请求获取并显示传感器实时数据

下一步就是完善其他三个功能,我主要通过python实现

完善系统功能
前面我简单提到了一些WIO终端上没有实现的功能的原因,具体原因我没有细说。毕竟刚开始做,所以打算先实现功能。至于实现方式,我想在二代系统中改进一下

通过 WIO 端子输出状态
我要表达的状态是读取可配置按钮的状态(是否按下按钮)和麦克风的数据(数据也可以代表状态)

对于WIO终端来说,简单的输出这些数据还是比较简单的

补充 setup() 中的管脚定义:

pinMode(WIO_MIC, INPUT);
pinMode(WIO_KEY_A, INPUT_PULLUP);
pinMode(WIO_KEY_B, INPUT_PULLUP);
pinMode(WIO_KEY_C, INPUT_PULLUP);

补充loop()中的if条件语句:

int val_first = analogRead(WIO_MIC);
int val_next = analogRead(WIO_MIC);

if (abs(val_first - val_next) >= 100){
  Serial.println("send message!");
  }
if (digitalRead(WIO_KEY_A) == LOW) {
  Serial.println("A Key pressed");
 }
if (digitalRead(WIO_KEY_B) == LOW) {
  Serial.println("B Key pressed");
 }
if (digitalRead(WIO_KEY_C) == LOW) {
  Serial.println("C Key pressed");
 }
当WIO终端连接PC时,PC会读取串口的数据,并在读取相应的输出时采取相应的动作

至此,我们已经完成了关于 Arduino 的所有代码。整理一下代码,分享给大家。

#include <WiFiClientSecure.h>
#include <ArduinoJson.h>
#include"LIS3DHTR.h"
#include"Free_Fonts.h"
#include"TFT_eSPI.h"


TFT_eSPI tft;
LIS3DHTR<TwoWire> lis;
WiFiClient client;

const char* ssid     = "Your WiFi account";
const char* password = "Your WiFi password";
const char*  server = "192.168.1.102";  // Server URL
String data;
float accelerator_readings[3];

 
void setup() {
  
    //Initialize serial and wait for port to open:
    Serial.begin(115200);
    delay(100);

    pinMode(WIO_MIC, INPUT);
    pinMode(WIO_KEY_A, INPUT_PULLUP);
    pinMode(WIO_KEY_B, INPUT_PULLUP);
    pinMode(WIO_KEY_C, INPUT_PULLUP);
 
    lis.begin(Wire1);
    lis.setOutputDataRate(LIS3DHTR_DATARATE_25HZ);
    lis.setFullScaleRange(LIS3DHTR_RANGE_2G);

    float x_raw = lis.getAccelerationX();
    float y_raw = lis.getAccelerationY();
    float z_raw = lis.getAccelerationZ();
    accelerator_readings[0] = x_raw; //store x-axis readings
    accelerator_readings[1] = y_raw; //store y-axis readings
    accelerator_readings[2] = z_raw; //store z-axis readings
 
//    Serial.print("Attempting to connect to SSID: ");
//    Serial.println(ssid);
    WiFi.begin(ssid, password);
 
    tft.begin();
    tft.setRotation(3);
    tft.fillScreen(TFT_BLACK);
    tft.setFreeFont(FMB12);
    tft.setCursor((320 - tft.textWidth("Connecting to Wi-Fi.."))/2, 120);
    tft.print("Connecting to Wi-Fi..");
 
    // attempt to connect to Wifi network:
    while (WiFi.status() != WL_CONNECTED) {
//        Serial.print(".");
        // wait 1 second for re-trying
        delay(1000);
    }
 
//    Serial.print("Connected to ");
//    Serial.println(ssid);
 
    tft.fillScreen(TFT_BLACK);
    tft.setCursor((320 - tft.textWidth("Connected!"))/2, 120);
    tft.print("Connected!");
 
    getFirstData();
}
 
void loop()
{
    int val_first = analogRead(WIO_MIC);
    float x_raw = lis.getAccelerationX();
    float y_raw = lis.getAccelerationY();
    float z_raw = lis.getAccelerationZ();
    int val_next = analogRead(WIO_MIC);

    if (abs(val_first - val_next) >= 100){
      Serial.println("send message!");
      }
    if (digitalRead(WIO_KEY_A) == LOW) {
      Serial.println("A Key pressed");
     }
    if (digitalRead(WIO_KEY_B) == LOW) {
      Serial.println("B Key pressed");
     }
    if (digitalRead(WIO_KEY_C) == LOW) {
      Serial.println("C Key pressed");
     }
    
    if (abs(accelerator_readings[0] - x_raw) >= 0.1 && abs(accelerator_readings[1] - y_raw) >= 0.1 && abs(accelerator_readings[2] - z_raw) >= 0.1){
      // Turning on the LCD backlight
      digitalWrite(LCD_BACKLIGHT, HIGH);
      getFirstData();
      delay(3000);
      getLastData();
      delay(3000);
    }
    else {
      // Turning off the LCD backlight
      digitalWrite(LCD_BACKLIGHT, LOW);
      delay(500);
      }
      
    for (uint8_t i = 0; i<3; i++){
        accelerator_readings[i] = 0.0; //this is used to remove the first read variable
      }
    
    accelerator_readings[0] = x_raw; //store x-axis readings
    accelerator_readings[1] = y_raw; //store y-axis readings
    accelerator_readings[2] = z_raw; //store z-axis readings
}
 
void getFirstData() {
//    Serial.println("\nStarting connection to server...");
    if (!client.connect(server, 9000)) {
//        Serial.println("Connection failed!");
        tft.fillScreen(TFT_BLACK);
        tft.setCursor((320 - tft.textWidth("Connection failed!"))/2, 120);
        tft.print("Connection failed!");
    } else {
//        Serial.println("Connected to server!");
 
        // Make a HTTP request:
        String postRequest =(String)("GET ") + "/ HTTP/1.1\r\n" + "Connection: close\r\n\r\n";  
//        Serial.println(postRequest);  
        client.print(postRequest);

        while (client.connected()) {
            String line = client.readStringUntil('\n');
            if (line == "\r") {
//                Serial.println("headers received");
                break;
            }
        }
 
        while(client.available())
        {
          String line = client.readStringUntil('\r');
          data = line;
        }
//        Serial.println(data);
        client.stop();
//        Serial.println("closing connection");
    }
 
    //ArduinoJson to parse data, plesae check ArduinoJson for more info
    const size_t capacity = JSON_OBJECT_SIZE(5) + 100;
    DynamicJsonDocument doc(capacity);
    deserializeJson(doc, data);
 
    float temperature = doc["temperature"];
    float pressure = doc["pressure"];
    float humidity = doc["humidity"];
 
// -----------------LCD---------------------
    tft.setFreeFont(FF17);
    tft.setTextColor(tft.color565(224,225,232));
    tft.drawString("Current Data At Home",20,10);
 
    tft.fillRoundRect(10, 45, 300, 55, 5, tft.color565(40,40,86));
    tft.fillRoundRect(10, 105, 300, 55, 5, tft.color565(40,40,86));
    tft.fillRoundRect(10, 165, 300, 55, 5, tft.color565(40,40,86));
 
    tft.setFreeFont(FM9);
    tft.drawString("temperature:", 75, 50);
    tft.drawString("pressure:",75, 110);
    tft.drawString("humidity:",75, 170);
 
    tft.setFreeFont(FMB12);
    tft.setTextColor(TFT_RED);
    tft.drawFloat(temperature,2 , 140, 75);
    tft.setTextColor(tft.color565(224,225,232));
    tft.drawFloat(pressure,2 , 140, 135);
    tft.setTextColor(TFT_GREEN);
    tft.drawFloat(humidity,2 , 140, 195);

    tft.drawString("℃", 210, 75);
    tft.drawString("KPa",210, 135);
    tft.drawString("%",210, 195);
}

void getLastData() {
//    Serial.println("\nStarting connection to server...");
    if (!client.connect(server, 9000)) {
//        Serial.println("Connection failed!");
        tft.fillScreen(TFT_BLACK);
        tft.setCursor((320 - tft.textWidth("Connection failed!"))/2, 120);
        tft.print("Connection failed!");
    } else {
//        Serial.println("Connected to server!");

        // Make a HTTP request:
        String postRequest =(String)("GET ") + "/ HTTP/1.1\r\n" + "Connection: close\r\n\r\n";  
//        Serial.println(postRequest);  
        client.print(postRequest);

        while (client.connected()) {
            String line = client.readStringUntil('\n');
            if (line == "\r") {
//                Serial.println("headers received");
                break;
            }
        }
 
        while(client.available())
        {
          String line = client.readStringUntil('\r');
          data = line;
        }
//        Serial.println(data);
        client.stop();
//        Serial.println("closing connection");
    }
 
    //ArduinoJson to parse data, plesae check ArduinoJson for more info
    const size_t capacity = JSON_OBJECT_SIZE(5) + 100;
    DynamicJsonDocument doc(capacity);
    deserializeJson(doc, data);

    float humidity = doc["humidity"];
    float gas = doc["gas"];
    String updataTime = doc["updataTime"];
 
// -----------------LCD---------------------
    tft.setFreeFont(FF17);
    tft.setTextColor(tft.color565(224,225,232));
    tft.drawString("Current Data At Home",20,10);
 
    tft.fillRoundRect(10, 45, 300, 55, 5, tft.color565(40,40,86));
    tft.fillRoundRect(10, 105, 300, 55, 5, tft.color565(40,40,86));
    tft.fillRoundRect(10, 165, 300, 55, 5, tft.color565(40,40,86));
 
    tft.setFreeFont(FM9);
    tft.drawString("humidity:", 75, 50);
    tft.drawString("gas:",75, 110);
    tft.drawString("updataTime:",75, 170);
 
    tft.setFreeFont(FMB12);
    tft.setTextColor(TFT_RED);
    tft.drawFloat(humidity,2 , 140, 75);
    tft.setTextColor(tft.color565(224,225,232));
    tft.drawFloat(gas,2 , 140, 135);
    tft.setTextColor(TFT_GREEN);
    tft.drawString(updataTime , 30, 195);

    tft.drawString("%", 210, 75);
    tft.drawString("Kohms",210, 135);
}
上传成功后,打开串口监视器:

接下来我们来看看Python的具体实现

使用Python读取串口数据并做出相应决策

web端增加了保存数据的功能

因为我需要发送邮件,所以我先将传感器接收到的数据存储在一个TXT文本文件中。发送邮件时,我可以直接发送这个文本文件

在视图中在 py 中:

def index(request):
    datas = getDatas()
    content = {
        'temperature':datas[0],
        'pressure':datas[1],
        'humidity':datas[2],
        'gas':datas[3],
        'updataTime':datas[4],
    }
    jsonData = json.dumps(content)
    with open("D:\TemperatureHumidityPressureGasData.txt", "w") as fp:
        fp.write(jsonData)
    return HttpResponse(jsonData)

主要变化是:

with open("D:\TemperatureHumidityPressureGasData.txt", "w") as fp:
        fp.write(jsonData) 

文件存放路径可以修改为自己的路径

打开文本文件,看能否保存成功:

通过红外模块控制小夜灯

小夜灯可以遥控控制:

因为WIO终端没有红外解码功能,所以我又买了一个红外模块,编解码合二为一。当然,我还需要一个usb-ttl串口转换器:

其实这个想法很简单。读取遥控器对应按键发送的数据,然后用红外模块发送出去

可以使用串口调试助手进行解码,更方便:

串行端口发送它接收到的任何内容。收货时最好找个比较暗的地方多试几次

以下是我收集的每个密钥应该发送的数据(十六进制):

开灯

send_data = 'FD FD 30 03 53 4B 00 34 17 01 3B 02 65 00 26 00 1E 00 27 00 D9 09 26 00 8A 00 40 02 C3 17 26 00 00 00 21 00 FF FF FF FF 01 22 22 22 22 11 11 11 11 12 11 22 22 21 22 11 13 45 46 F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05 76 00 22 DF DF'

提亮

 send_data = 'FD FD 30 03 52 47 00 34 16 01 3A 02 66 00 27 00 20 00 27 00 D9 09 25 00 8A 00 41 02 00 00 21 00 FF FF FF FF FF FF FF FF 01 22 22 22 22 11 11 11 12 21 11 22 21 12 22 11 13 45 F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08 76 3F 6D DF DF '

调光

send_data = 'FD FD 30 03 53 4B 00 34 16 01 3C 02 63 00 27 00 1F 00 27 00 DA 09 25 00 8B 00 3D 02 C4 17 24 00 00 00 20 00 FF FF FF FF 01 22 22 22 22 11 11 11 12 11 11 22 21 22 22 11 13 45 46 F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 76 3F 2E DF DF ' 

要发送红外线,只需再添加两行:

send_data = bytes.fromhex(send_data) #先编码,再发送
infrared_ser.write(send_data) 

通过语音控制PC发送邮件

语音不是真正的语音识别。当WIO终端识别到环境音频信号有波动时,会发送“send message!” 到串口,PC读取后发送邮件

说话时,音频信号会有明显的波动:

发送电子邮件并不难。我把它封装成一个方法,当时可以直接调用

import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.header import Header

def send():
    # 第三方 SMTP 服务
    mail_host="smtp.qq.com"  #设置服务器
    mail_user=""    #用户名
    mail_pass=""   #口令

    sender = ''
    receivers = ['']  # 接收邮件,可设置为你的QQ邮箱或者其他邮箱

    #创建一个带附件的实例
    message = MIMEMultipart()
    message['From'] = Header("Wio Terimal", 'utf-8')
    message['To'] =  Header("温湿度、大气压力、可燃气体检测数据", 'utf-8')
    subject = '当前温湿度、大气压力、可燃气体检测数据'
    message['Subject'] = Header(subject, 'utf-8')

    #邮件正文内容
    message.attach(MIMEText('温湿度、大气压力、可燃气体检测数据', 'plain', 'utf-8'))

    # 构造附件,传送当前目录下的 test.txt 文件
    att = MIMEText(open('D:\TemperatureHumidityPressureGasData.txt', 'rb').read(), 'base64', 'utf-8')
    att["Content-Type"] = 'application/octet-stream'
    # 这里的filename可以任意写,写什么名字,邮件中显示什么名字
    att["Content-Disposition"] = 'attachment; filename="TemperatureHumidityPressureGasData.txt"'
    message.attach(att)
    server = smtplib.SMTP_SSL(mail_host, 465) # SMTP协议默认端口是25
    server.set_debuglevel(1)
    server.login(mail_user, mail_pass)

    try:
        server.sendmail(sender, receivers, message.as_string())
        print ("邮件发送成功")
    except smtplib.SMTPException:
        print ("Error: 无法发送邮件")

此处的发送者和接收者可以编写自己的电子邮件。尝试发送电子邮件进行测试:

预览此 TXT 文件:

通过语音合成回复用户

Windows系统下,可以直接调用系统的语音包:

import win32com.client

speaker = win32com.client.Dispatch("SAPI.SpVoice")
text = "输入要语音合成的内容"
speaker.Speak(text)

完整的程序

代码中的串口需要改成自己的串口:

  • Com14是WIO终端开发板
  • Com15是红外模块
  • Com19是seeeduino v4 2开发板

每次插上后,可能会因为电脑上的USB接口不够,导致串口发生变化。我买了一个 USB 扩展坞

import serial
import re

import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.header import Header

import win32com.client

speaker = win32com.client.Dispatch("SAPI.SpVoice")

def send():
    # 第三方 SMTP 服务
    mail_host="smtp.qq.com"  #设置服务器
    mail_user="2733821739@qq.com"    #用户名
    mail_pass=""   #口令

    sender = '2733821739@qq.com'
    receivers = ['2733821739@qq.com']  # 接收邮件,可设置为你的QQ邮箱或者其他邮箱

    #创建一个带附件的实例
    message = MIMEMultipart()
    message['From'] = Header("Wio Terimal", 'utf-8')
    message['To'] =  Header("温湿度、大气压力、可燃气体检测数据", 'utf-8')
    subject = '当前温湿度、大气压力、可燃气体检测数据'
    message['Subject'] = Header(subject, 'utf-8')

    #邮件正文内容
    message.attach(MIMEText('温湿度、大气压力、可燃气体检测数据', 'plain', 'utf-8'))

    # 构造附件,传送当前目录下的 test.txt 文件
    att = MIMEText(open('D:\TemperatureHumidityPressureGasData.txt', 'rb').read(), 'base64', 'utf-8')
    att["Content-Type"] = 'application/octet-stream'
    # 这里的filename可以任意写,写什么名字,邮件中显示什么名字
    att["Content-Disposition"] = 'attachment; filename="TemperatureHumidityPressureGasData.txt"'
    message.attach(att)
    server = smtplib.SMTP_SSL(mail_host, 465) # SMTP协议默认端口是25
    server.set_debuglevel(1)
    server.login(mail_user, mail_pass)

    try:
        server.sendmail(sender, receivers, message.as_string())
        print ("邮件发送成功")
        speaker = win32com.client.Dispatch("SAPI.SpVoice")
        text = "Message sent successfully"
        speaker.Speak(text)
    except smtplib.SMTPException:
        print ("Error: 无法发送邮件")


infrared_ser = serial.Serial('COM10', 9600, timeout=0.2)
Wio_terminal = serial.Serial('COM14', 115200, timeout=0.2)

# 接收返回的信息
while True:
    strs = Wio_terminal.readline().decode('utf-8')
    if strs.strip()!='':
        print(strs)
        if (re.match(r"C",strs)):
            send_data = 'FD FD 30 03 53 4B 00 34 17 01 3B 02 65 00 26 00 1E 00 27 00 D9 09 26 00 8A 00 40 02 C3 17 26 00 00 00 21 00 FF FF FF FF 01 22 22 22 22 11 11 11 11 12 11 22 22 21 22 11 13 45 46 F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05 76 00 22 DF DF'
            send_data = bytes.fromhex(send_data)
            infrared_ser.write(send_data)
            text = "OK executed"
            speaker.Speak(text)
        elif (re.match(r"B",strs)):
            send_data = 'FD FD 30 03 52 47 00 34 16 01 3A 02 66 00 27 00 20 00 27 00 D9 09 25 00 8A 00 41 02 00 00 21 00 FF FF FF FF FF FF FF FF 01 22 22 22 22 11 11 11 12 21 11 22 21 12 22 11 13 45 F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08 76 3F 6D DF DF '
            send_data = bytes.fromhex(send_data)
            infrared_ser.write(send_data)
            text = "Brightness up"
            speaker.Speak(text)
        elif (re.match(r"A",strs)):
            send_data = 'FD FD 30 03 53 4B 00 34 16 01 3C 02 63 00 27 00 1F 00 27 00 DA 09 25 00 8B 00 3D 02 C4 17 24 00 00 00 20 00 FF FF FF FF 01 22 22 22 22 11 11 11 12 11 11 22 21 22 22 11 13 45 46 F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 76 3F 2E DF DF '
            send_data = bytes.fromhex(send_data)
            infrared_ser.write(send_data)
            text = "Brightness down"
            speaker.Speak(text)
        elif (re.match(r"send",strs)):
            try:
                send()
            except:
                text = "Failed to send mail. Please try again later"
                speaker.Speak(text)


infrared_ser.close()
Wio_terminal.close()

未来的想法

目前的系统只是一个非常简单的第一代版本。往后我们可能会考虑使用云平台存储传感器采集的温度、湿度、光照强度、紫外线强度等数据,制作一个APP,让用户出门在外就可以知道家里的情况。

如果您对此项目有任何想法、意见或问题,请在下方留言。

以上内容翻译自网络,原作者:Wan Niu,如涉及侵权,可联系删除。

加入微信技术交流群

技术交流,职业进阶

关注与非网服务号

获取电子工程师福利

加入电路城 QQ 交流群

与技术大牛交朋友

讨论