AlphaGo只是DeepMind团队的第一步,人工智能目标还很长远

2016年04月05日 作者:蓝小喵儿

打败了世界围棋冠军,这只是万里长征的第一步。

加了垫子的墙,昏黄的灯光,花样墙纸的天花板。这里一点也不像能做出改变世界的尖端发现。但在这些让人快要幽闭恐惧症的模拟走廊里,Demis Hassabis认为,他在为创造足以解决人性最大难题的软件铺设道路。

“我们的目标很大,”Hassabis说,他冷静稳健的风格让人无法想象他概念的大胆。他在谷歌DeepMind领导一只有200名计算机科学家和神经学家的团队,DeepMind就是在3月初打败了人类围棋大师的AlphaGo背后的位于伦敦的团队,创造了计算机历史上的里程碑。

但是,Hassabis说这只是万里长征的第一步,作为人工智能领域的阿波罗计划,目标“解决智能问题,然后用它解决其他所有问题。”如今判断智能软件的标准具体到了一个特定的任务——面部识别。Hassabis希望创造他所称的“综合智能”——像人类一样可以学会完成任何任务。他展望未来人工智能可以做各种事情,通过形成和测试科学假说推进医学发展,或者用轻巧灵活的机器人身体跳来跳去。

要实现这个目标,DeepMind的软件必须超越黑白分明、秩序井然的围棋世界。它需要掌握乱糟糟的真实世界——或者从一个昏暗的、像素化的模拟世界开始。DeepMind的模拟世界叫做Labyrinth,公司在用它让软件尝试非常复杂的任务,例如在迷宫中导航。这会推动DeepMind研究员钻研如何制造更智能的软件,推动软件学会面对更难的决策和问题。他们利用了之前AlphaGo以及DeepMind更早炫耀过的技能,DeepMind学会玩二十世纪八十年代的太空入侵者等复古Atari游戏,玩得比人类都好。但要成功,Hassabis必须想出办法,解决人工智能领域中一些年代已久的问题。

自我改善

39岁的Hassabis此生很多时间都在研究如何创造智能。当年象棋神童提早从高中毕业,开始了视频游戏职业生涯。后来他获得了神经科学的博士学位,发布了关于记忆与想象的影响广泛的论文。

Hassabis在2011年联合创建了DeepMind,将他所学的生物智能转化到机器。公司在2013年12月发布了学会Atari游戏的软件,在2014年初被谷歌收购,据报道金额达4亿英镑,当时超过六亿美元。DeepMind快速扩张,新增雇佣几十名研究人员,在顶尖机器学习和人工智能会议发表大量论文。今年一月,它宣布了AlphaGo的存在,以及AlphaGo在2015年12月打败了欧洲最强围棋玩家的消息。本月初,AlphaGo打败了世界围棋冠军李世石。

1 2 3

相关文章

tracer