开启新的征程,邀请您见证ST的蜕变

【特惠季】小马哥最新小四轴,完整资料限时特价开源!

圣节LED南瓜,使用BeagleBoard PocketBeagle制作

德国Mikrokopter四轴电调原理和程序代码全套(修复了bug已经量产)

  • 德国Mikrokopter四轴电调原理和程序代码全套(修复了bug已经量产)
  • 德国Mikrokopter四轴电调原理和程序代码全套(修复了bug已经量产)
  • 德国Mikrokopter四轴电调原理和程序代码全套(修复了bug已经量产)

德国Mikrokopter四轴电调原理和程序代码全套(修复了bug已经量产)

德国Mikrokopter四轴电调原理和程序代码全套(修复了bug已经量产)

德国Mikrokopter四轴电调原理和程序代码全套(修复了bug已经量产)


资料内容包括上面的资料,有电路(AD文件)原理图 pcb ,公司实测通过,量产产品的电路图,还有源代码,编译通过。大家可以放心使用,还有一些是我用来研究电调时候的资料,十分有用,一定可以让大家快速掌握。谢谢。

  1. 本资料已经在公司进行过量产可批发到市场,比网上一般下的要稳定因为公司工程师已经修复了官网的不少的bug

电路相关文件

电路图文件
AD6格式的电路图和PCB.rar
描述:电路图和PCB,见截图展示
源代码
C源程序和固件.rar
描述:源代码和编译固件
其他文件
联系方式.txt
描述:本人联系方式
分享到:
收藏 (38)
电子硬件助手小程序 电子硬件助手小程序

电路城电路折扣劵获取途径:

电路城7~10折折扣劵(全场通用):对本电路进行评分获取;

电路城6折折扣劵(限购≤100元电路):申请成为卖家,上传电路,审核成功后获取。

(版权归吴伟镖所有)

版权声明:电路城所有电路均源于网友上传或网上搜集,供学习和研究使用,其版权归原作者所有,对可以提供充分证据的侵权信息,本站将在确认后24小时内删除。对本电路进行投诉建议,点击投诉本电路反馈给电路城。

使用说明:直接使用附件资料或需要对资料PCB板进行打样的买家,请先核对资料的完整性,如果出现问题,电路城不承担任何经济损失!

换一批 more>>

大家都在看:

继续阅读

  • 双十一特别活动:小马哥RoboFly四轴套件大放价!

    我们不用点赞,不用转发锦鲤,只要你喜欢,只要你需要这个套件,你的差价我们来买单!现在团购价格已经降至290/套,之前购买的的按最终成交价格退差价!活动详情:1、 此次团购套件(原价321.5元)包括价值176.5元的RoboFly四轴散件一套以及价值145元的成品手柄一套,含四轴相关资料;2、 团购初始价格为310元/套: 1-10人参与团购:310/套 11-50人参与团购:290/套 51-100人参与团购:270/套3、 付款价格为310,付款价格与最终团购价格的差价将在活动结束后返回买家支付宝账号,活动结束后注意查收!4、 所有套件将在活动结束后统一寄送,成功参与团购的买家联系管理员(QQ:3457013729),可加入此次团购的技术指导群,小马哥将统一提供技术指导,未成功团购的用户不得加群。5、本次团购活动提供技术支持,但是由于个人基础不同,操作过程不可控等因素,不能确保四轴散件一定能够焊接成功,本次活动的主要还是方便大家在焊接过程中快速学习与进步,所以电路城以及小马哥方不承担四轴焊接失败的后果,请大家知晓!6、团购中的遥控器是成品,成品是为了方便大家快速排除四轴焊接过程中的问题;另外,遥控器不提供pcb文件,只提供原理图和源代码!7、此次团购套件不提供发票!8、活动最终解释权归电路城所有!活动时间:2018年11月5日-2018年11月30日注意:只需要购买四轴散件或者遥控器的可至小马哥淘宝店铺直接购买,不享受本次团购的差价补贴!店铺传送门 小马哥RoboFly四轴介绍:RoboFly是小马哥团队在2018年8月推出的一款完全开源的小四轴。你可以学到什么?这款四轴面向的人群是电子相关专业(包括自动化、电气自动化、电子信息工程、计算机、测控等专业)的大学生,通过一个完整的四轴项目来学习贴片元器件的焊接、PCB设计软件AD的使用、电路基本知识、旋翼型无人机的基本原理、STM32单片机编程与基本使用、飞控算法的实现等。据了解,目前大多数高校的电子专业的课程实训依然是焊接收音机等,单片机课程教的也是单片机,这已经不能满足学生的学习了,学生毕业之后进入企业,大多接触的是贴片元器件(功率器件除外),做产品的时候,硬件工程师必须要具备一定的调试能力,这就对焊接贴片元件的能力提出了要求,所以我们设计了这款四轴飞行器,使用0603、0805这样贴片元件,是练习焊接的好帮手,而且好处在于,焊接练习完了,还可以继续学习STM32,四轴原理,直到把这个四轴飞行器飞起来,在这个过程中,我们也有交流群和学习资料,供大家学习使用。下面是RoboFly四轴飞行器的整体框图、原理图、pcb、实物图源代码的截图,先一睹为快,后面详细介绍。图1:RoboFly四轴飞行器整体框图图2:RoboFly四轴飞行器原理图图3:RoboFly四轴飞行器PCB图图4:RoboFly四轴飞行器PCB 3D俯图图5:RoboFly四轴飞行器PCB 3D侧视图图6:RoboFly四轴飞行器实物图图7:RoboFly四轴飞行器源代码截图制作并开源这套小四轴的初衷有如下几点; 1、初学者需要一款价格低廉、软硬件资料完备、有技术支持的四轴学习平台; 2、以散件形式发售,电路板布局、元器件封装选型要方便焊接组装; 3、四轴所需元器件采购方便、靠谱,最好能提供一站式采购,避免过多邮费、采购周期长、采购到不合格元器件导致学习难以进展。 4、源代码要极其精简、方便入门者能够方便的学习,实现自己的代码; 5、保留一定扩展接口、方便用户自己进行扩展如定高、航迹、巡线等飞行功能。在学习完四轴飞行器之后,这个开源的四轴板子仍然可以作为一个STM32开发学习板使用;RoboFly四轴的基本配置如下:主控芯片:STM32F103C8T6 姿态检测:MPU6050气压计:FBM320无线芯片:SI24R1供电方案:HT7750SA升压+XC6206稳压灯光指示:1个电源指示LED、1个用户编程LED、4个单总线全彩RGB灯电池:600mAh 20C 1S锂离子电池电机:720空心杯桨叶:55mm桨叶桨叶保护罩:相邻轴距65mm机架:PCB一体化机架续航时间:10分钟遥控距离:空旷50mRoboFly四轴原理图各模块简单说明:STM32F103C8T6是ST在2007年发布的一款MCU,截止目前ST已经发布了速度高达400MHz的STM32H7 (这时候一定有人会说600MHz的事,我知道,不用提醒),我自己也是用STM32F1,STM32F4,STN32F7都做过各种各样的四轴,但是这个开源的四轴我还是选择了STM32F103C8T6,主要从三点考虑,一是封装比较大,方便初学者焊接,二是价格低廉,学习成本比较低,三是网上有大量的资料供初学者学习使用。姿态传感器选择MPU6050,主要考虑的也是封装比较大,可以直接使用烙铁焊接,而且价格比较低,资料也很丰富。而且还自带DMP库,可以完成姿态结算后直接把姿态角输出给主控芯片。2016年我们的第一款四轴就是采用DMP库输出姿态角的。气压计使用的是FBM320,对于这款气压计,个人认为性能一般。但是优点就是这个封装和BMP280、SPL06的引脚都是兼容的,方便更换。但是小四轴上放气压计,有一个比较麻烦的地方就是要想办法排除桨叶的风对它的干扰。可以使用海绵等其他东西进行隔离。无线芯片用的是SI24R1,国产的,之所以用这个而不用NRF2401,是因为这个经过我测试,性能也是可以的,引脚完全兼容NRF2401,无线发射可以做到7dB,在发射和接收端都采用陶瓷天线的前提下,可以达到50m的通讯距离。如果加上AP,那达到100米应该没有问题。通过两个低成本的0欧姆电阻对电源进行了单点接地,防止电机回路的电流波动串进射频回路对射频造成干扰。对于供电方案中的先升压再降压的方案,这是我做第一款四轴飞行器的时候发现的,这种1S的锂离子电池,在四个空心杯进行供电的时候,如果四个空心杯电机不带桨叶,也就是说没有负载,那启动是没有问题的。但是如果四个空心杯都带上负载,瞬间提速到满速,就会瞬间把电池输出电压拉低到3V以下,经过我测试甚至低到了2.8V,这时候如果不升压,直接用电池给LDO供电,那LDO就会失效。所以通过升压再降压后给单片机系统供电是一个可行的方案。另一个方案就是在电机启动的时候采用缓慢启动的方式,这样电池的电压就不会瞬间被拉低,但是这样的一个不足之处就是无法让这个小四轴非常暴力,飞起来不够爽快。四个机臂上采用的RGBLED是串行单总线全彩灯,也就意味着只需要占用单片机的一个IO端口,就可以控制这四个灯发出各种各样的颜色。这个灯类似与WS2811,也是通过零一码来实现数据通讯,进而控制灯的颜色的。对于初学者而言,时序往往难以理解,而这个灯可以作为学习时序最简单的一个例程,虽然简单,但是却非常有趣。因为小四轴的尺寸、重量等限制,这版四轴飞行器的电池最好不要超过600mAh,否则电池自身的重量就会成为最大的包袱。而太小的电池则不能提供较长时间的续航。总之我经过测试认为600 mAh容量应该是一个拐点。电池最好带保护板、有一定的安全性能。否则胀饱、失效事小,严重点在炸机的时候可能会爆炸。对于这个四轴最关键的一个组建—空心杯,说出来都是泪啊,做四轴两年,有一年的时间都在寻找合格的空心杯电机。2017年有一款四轴飞行器因为采购的电机侧向震动太大,导致桨叶转动之后产生很大的侧向震动、严重干扰了加速度计,使角度偏差很大,基本不能垂直飞行。一开始把问题锁定在MOS管上、陀螺仪上、原理图与PCB设计上都未能解决问题,后来对原始数据进行FFT变换后发现了干扰的频率点,这才确定是电机的侧向震动引起的。还有一种情况就是同一批次的电机性能差异很大,导致PID调节的输出差异很大,最终会影响MOS管的寿命、电机寿命。空心杯电机使用SI2302这款MOS管进行驱动,这是非常常见的一款MOS管,便宜又好用。但是市面上这个管子假货也比较多。很多人在电机驱动电路上加不加电容、加不加二极管有很大的争议,我经过测试发现,加上电容之后效果很好,而加上二极管的效果则一般。也可能是测试方式不够严谨,回头可以一起讨论这个问题。桨叶选型一定要注意选择平衡性好的桨叶、做工有瑕疵的可能会影响平衡性,在飞行的时候,如果不平衡就会导致侧向震动。初学者在调试四轴的时候,摔下来、失控是很常见的,所以加上桨叶保护罩之后,可以很大程度上减小桨叶、电机报废的概率。如果采用飞控板和机架隔离的方式,就能从一定程度上降低震动的影响,但是这样或许会增加重量及成本,所以我选择了PCB机架,这也是初学者最容易实现的一个方案,但不是唯一的方案。
    来自:飞行器时间:2018-11-05 stm32 pcb 四轴
  • 小马哥STM32开源RoboFly四轴飞行器原理图、PCB工程、源代码、3D模型文件等全部资料分享

    双十一特别活动:小马哥RoboFly四轴套件大放价!团购入口:http://www.cirmall.com/circuit/10587/details RoboFly是小马哥团队在2018年8月推出的一款完全开源的小四轴。这款四轴面向的人群是电子相关专业(包括自动化、电气自动化、电子信息工程、计算机、测控等专业)的大学生,通过一个完整的四轴项目来学习贴片元器件的焊接、PCB设计软件AD的使用、电路基本知识、旋翼型无人机的基本原理、STM32单片机编程与基本使用、飞控算法的实现等。据了解,目前大多数高校的电子专业的课程实训依然是焊接收音机等,单片机课程教的也是单片机,这已经不能满足学生的学习了,学生毕业之后进入企业,大多接触的是贴片元器件(功率器件除外),做产品的时候,硬件工程师必须要具备一定的调试能力,这就对焊接贴片元件的能力提出了要求,所以我们设计了这款四轴飞行器,使用0603、0805这样贴片元件,是练习焊接的好帮手,而且好处在于,焊接练习完了,还可以继续学习STM32,四轴原理,直到把这个四轴飞行器飞起来,在这个过程中,我们也有交流群和学习资料,供大家学习使用。下面是RoboFly四轴飞行器的整体框图、原理图、pcb、实物图源代码的截图,先一睹为快,后面详细介绍。图1:RoboFly四轴飞行器整体框图图2:RoboFly四轴飞行器原理图图3:RoboFly四轴飞行器PCB图图4:RoboFly四轴飞行器PCB 3D俯图图5:RoboFly四轴飞行器PCB 3D侧视图图6:RoboFly四轴飞行器实物图图7:RoboFly四轴飞行器源代码截图制作并开源这套小四轴的初衷有如下几点; 1、初学者需要一款价格低廉、软硬件资料完备、有技术支持的四轴学习平台; 2、以散件形式发售,电路板布局、元器件封装选型要方便焊接组装; 3、四轴所需元器件采购方便、靠谱,最好能提供一站式采购,避免过多邮费、采购周期长、采购到不合格元器件导致学习难以进展。 4、源代码要极其精简、方便入门者能够方便的学习,实现自己的代码; 5、保留一定扩展接口、方便用户自己进行扩展如定高、航迹、巡线等飞行功能。在学习完四轴飞行器之后,这个开源的四轴板子仍然可以作为一个STM32开发学习板使用;RoboFly四轴的基本配置如下:主控芯片:STM32F103C8T6 姿态检测:MPU6050气压计:FBM320无线芯片:SI24R1供电方案:HT7750SA升压+XC6206稳压灯光指示:1个电源指示LED、1个用户编程LED、4个单总线全彩RGB灯电池:600mAh 20C 1S锂离子电池电机:720空心杯桨叶:55mm桨叶桨叶保护罩:相邻轴距65mm机架:PCB一体化机架续航时间:10分钟遥控距离:空旷50mRoboFly四轴原理图各模块简单说明:STM32F103C8T6是ST在2007年发布的一款MCU,截止目前ST已经发布了速度高达400MHz的STM32H7 (这时候一定有人会说600MHz的事,我知道,不用提醒),我自己也是用STM32F1,STM32F4,STN32F7都做过各种各样的四轴,但是这个开源的四轴我还是选择了STM32F103C8T6,主要从三点考虑,一是封装比较大,方便初学者焊接,二是价格低廉,学习成本比较低,三是网上有大量的资料供初学者学习使用。姿态传感器选择MPU6050,主要考虑的也是封装比较大,可以直接使用烙铁焊接,而且价格比较低,资料也很丰富。而且还自带DMP库,可以完成姿态结算后直接把姿态角输出给主控芯片。2016年我们的第一款四轴就是采用DMP库输出姿态角的。气压计使用的是FBM320,对于这款气压计,个人认为性能一般。但是优点就是这个封装和BMP280、SPL06的引脚都是兼容的,方便更换。但是小四轴上放气压计,有一个比较麻烦的地方就是要想办法排除桨叶的风对它的干扰。可以使用海绵等其他东西进行隔离。无线芯片用的是SI24R1,国产的,之所以用这个而不用NRF2401,是因为这个经过我测试,性能也是可以的,引脚完全兼容NRF2401,无线发射可以做到7dB,在发射和接收端都采用陶瓷天线的前提下,可以达到50m的通讯距离。如果加上AP,那达到100米应该没有问题。通过两个低成本的0欧姆电阻对电源进行了单点接地,防止电机回路的电流波动串进射频回路对射频造成干扰。对于供电方案中的先升压再降压的方案,这是我做第一款四轴飞行器的时候发现的,这种1S的锂离子电池,在四个空心杯进行供电的时候,如果四个空心杯电机不带桨叶,也就是说没有负载,那启动是没有问题的。但是如果四个空心杯都带上负载,瞬间提速到满速,就会瞬间把电池输出电压拉低到3V以下,经过我测试甚至低到了2.8V,这时候如果不升压,直接用电池给LDO供电,那LDO就会失效。所以通过升压再降压后给单片机系统供电是一个可行的方案。另一个方案就是在电机启动的时候采用缓慢启动的方式,这样电池的电压就不会瞬间被拉低,但是这样的一个不足之处就是无法让这个小四轴非常暴力,飞起来不够爽快。四个机臂上采用的RGBLED是串行单总线全彩灯,也就意味着只需要占用单片机的一个IO端口,就可以控制这四个灯发出各种各样的颜色。这个灯类似与WS2811,也是通过零一码来实现数据通讯,进而控制灯的颜色的。对于初学者而言,时序往往难以理解,而这个灯可以作为学习时序最简单的一个例程,虽然简单,但是却非常有趣。因为小四轴的尺寸、重量等限制,这版四轴飞行器的电池最好不要超过600mAh,否则电池自身的重量就会成为最大的包袱。而太小的电池则不能提供较长时间的续航。总之我经过测试认为600 mAh容量应该是一个拐点。电池最好带保护板、有一定的安全性能。否则胀饱、失效事小,严重点在炸机的时候可能会爆炸。对于这个四轴最关键的一个组建—空心杯,说出来都是泪啊,做四轴两年,有一年的时间都在寻找合格的空心杯电机。2017年有一款四轴飞行器因为采购的电机侧向震动太大,导致桨叶转动之后产生很大的侧向震动、严重干扰了加速度计,使角度偏差很大,基本不能垂直飞行。一开始把问题锁定在MOS管上、陀螺仪上、原理图与PCB设计上都未能解决问题,后来对原始数据进行FFT变换后发现了干扰的频率点,这才确定是电机的侧向震动引起的。还有一种情况就是同一批次的电机性能差异很大,导致PID调节的输出差异很大,最终会影响MOS管的寿命、电机寿命。空心杯电机使用SI2302这款MOS管进行驱动,这是非常常见的一款MOS管,便宜又好用。但是市面上这个管子假货也比较多。很多人在电机驱动电路上加不加电容、加不加二极管有很大的争议,我经过测试发现,加上电容之后效果很好,而加上二极管的效果则一般。也可能是测试方式不够严谨,回头可以一起讨论这个问题。桨叶选型一定要注意选择平衡性好的桨叶、做工有瑕疵的可能会影响平衡性,在飞行的时候,如果不平衡就会导致侧向震动。初学者在调试四轴的时候,摔下来、失控是很常见的,所以加上桨叶保护罩之后,可以很大程度上减小桨叶、电机报废的概率。如果采用飞控板和机架隔离的方式,就能从一定程度上降低震动的影响,但是这样或许会增加重量及成本,所以我选择了PCB机架,这也是初学者最容易实现的一个方案,但不是唯一的方案。
    来自:飞行器时间:2018-09-24 单片机 stm32 pcb
  • 自制无人机电调,无刷电机驱动器

    1、使用stm8s003作为控制芯片。2、mos管驱动采样fd6288桥式驱动芯片。3、采用反电动势过零点进行换相。4、本人测试1400KV电机,8060桨叶,95%占空比运行,电流10A,升力(没有实际测试,但是一个电机就足以把一整个四旋翼带飞)。5、提供完整电路和PCB,提供基本运行程序(烧录即可运行,通过改变变量speed(1--1000)即可改变pwm占空比),ps(pwm为20K),6、ps:原理图晶振为20M,不是8M。7、适合自己玩儿四旋转的玩家DIY电调。8、为了保证运行稳定,mos管面三个桥分别焊接3个100uf的大电容使用,9、凡购买者可加Q897718875,售后问题解答
  • BLHeli s 电调 GitHub源代码及电路图等

    该BLHeli_s电调采用双面板,基于EFM8BB21F16G和FD6288设计,PCB大小为2.5cm×5cm。固件J,已验证。已更新第3版。下图是第一版的图BLHeli_s 电调 PCB 截图(第2版):第3版缩短了几根走线,不再绕半个圈。适应拼板稍稍加粗了母线。见下图由于电路已经定型,原V2的工程文件未改动。只在目录下增加了两个文件bls_j_V3.PcbDoc 和bls_j_V3拼板.PcbDoc另外,重新搬运了下源码和BLsuite软件。运行效果:
    来自:电机驱动与控制时间:2018-08-14 电调 无刷电调 bl电调
  • 四轴遥控板电路图 PCB 程序源码开源

    本设计四轴遥控板QCopterRemoteControl 是一个遥控器开发板,四轴飞行器的控制装置,用来与QCopterFlightControl沟通、控制,板上搭载摇杆与传感器,并外接3.5 寸显示荧幕,可以将四轴上的回传回来的信息显示出来,荧幕建立了简单的操作界面,方便使用者设定、观察飞控板,目前遥控器有 QCopterRC 与 QCopterRCs 两种版本,前者使用芯片效能较高、功能多,带高分辨率的荧幕,后者功能较为简洁,制作成本比较低。四轴遥控板实物截图:遥控板系统框图:硬件:控制器  : STM32F407V 100Pin 168MHz DSP FPU显示器  : TFT_3.5-inch ( 3.5" 480*320 ),使用 FSMC 操作传感器  : IMU 6-DOF ( MPU-6050 )储存纪录 : SD 卡,使用 SDIO 操作无线传输 : nRF24L01P + PA + LNA乙太网络 : W5500,使用 SPI 操作外接界面 : 1SPI ( FFC16 ) 、1USB ( Micro ) 、1UART、1I2C/CANPCB 尺寸 : 155 * 60mm设计软件 Altium Designer 13 ( PcbLib use AD PcbLib v0.2 )*** 目前 W5500 尚未完成测试 ...QCopterRC v2.0 预计修改 ( 尚未决定改版时间 ):微控制器改为 LQFP100 的 STM32F42xV 或 STM32F43xV,增加运算速度。无线传输部分改用 nRF51422 传输,以兼容 BLE & ANT+。改成使用 TFT_4.0-inch 800*480 荧幕,增加分辨率及画质。由于改成 4 寸荧幕,所以会修改整体位置,并增减部分输入装置功能或数量,象是按键数等。去除乙太网络功能。开发进程:QCopterRC RemoteControl ( 已完成基本遥控功能,界面完善中... )QCopterRC WaveForm ( 示波器功能 )QCopterRC Bitmap ( Bitmap 档案读取 )附件资料截图:
    来自:飞行器时间:2018-07-31 四轴 遥控器 遥控板
  • 备战2017年电赛,共享前年参赛准备的四旋翼自主飞行器资料

    全国大学生电子设计竞赛只有短短的四天三夜的时间,前期准备必不可少,如果没有充分的前期准备,在这么短的时间内做出一个好的作品那是很难的。我们团队参与的2015年全国大学生电子设计竞赛中,参赛前指导老师给我们做了前期辅导,还有校内培训、校内选拔环节,此外,还有赛题分析、历年赛题模拟,通过练题,让我们对比赛提前有了感觉,也从中发现自己的不足,促使我们有目标的去学习和充实自己。下面是我们团队参赛时备用的四轴资料,分享给2017年电赛的你们。MikroKopter四轴飞行控制板原理图四旋翼自主飞行器电路图附件包含以下资料
  • 炙手可热的四轴主板原理图设计分享,玩四轴看过来!

    四轴飞行器,无人机正处于炙手可热的阶段,作为一个电子发烧友,不玩一把实在可惜,分享STC15四轴主板原理图V1.0,有需要的可以下来看看!STC15四轴主板原理图截图:
    来自:飞行器时间:2017-07-10 四轴 主板原理图 四轴主板
  • EEDrone开源四旋翼第一代DIY制作(飞控主板+飞控IMU+飞控固件)

    声明:该设计资料来源于网友eeworld-lb8820265的开源分享,仅供学习参考,不可用途商业用途。 你是否也和我一样有这样的疑惑:论文中那么多四旋翼控制算法和姿态解算算法,为何在开源四旋翼平台中见不到?控制算法都是PID,姿态解算都是mahony和EKF。 但现在四旋翼控制还存在很多问题,例如:抗干扰能力和鲁棒性有待继续提高,变重心变质量情况下的控制效果不佳,起飞不稳定,室内自主悬停控制不够理想,惯性导航和室内导航精度低等。可研究的内容还很多,任重而道远。会发现当仿真通过后,却找不到一个趁手的四旋翼平台进行验证。目前适合研究的四旋翼平台: Pixhawk功能强大,可扩展性好。但是也存在着如下的问题: 1. 编译复杂,开发环境不是IDE,无法在线debug2. Nuttx操作系统复杂,而且实时性有待提高,传感器数据读取到最后控制输出的时间过长3. 很多代码用matlab生成,不利于阅读,没有利用F4的Dsp核,效率低下,且代码结构复 杂,不利于二次开发4. 数传速度低,只有1Hz,不能实时分析5. IMU没有减震,需要整个飞控加减震6. 修改程序到成功烧录过程繁琐,且不支持无线更新 大疆的M100和guidance是不错的开发平台,但是却主要用来开发视觉算法。控制算法和姿态解算给封装了。 其他:某宝上面的各种飞控,元器件性能低下,无操作系统,控制算法和姿态解算算法性能低,接口少,作为玩具还可以,作为科研那就呵呵了。Ascending Technologies公司的四旋翼开发平台倒是经常被各个科研院校和比赛使用,但是价格摆在那里。 因此越来越感受到拥有一个适合研究的四旋翼平台的重要性,无奈我个人的精力和能力有限,因此开贴聚拢志同道合的朋友共同学习,只有开源才能促进技术的进步。初步设想的四旋翼具有如下的特点: 1. 具有先进的控制和姿态解算算法2. 程序模块化设计,方便各种算法的实现3. 提供Matlab仿真和理论支持4. 高速数传,数据波形实时查看和分析5. 高性能MCU和IMU6. 优化代码,充分利用DSP核7. 支持无线更新8. 使用IDE编写、编译、调试和烧录9. 采用简单高效的操作系统,充分减少控制延时10. IMU放到有减震海绵的铝盒子里,接口形式可更换不同方案11. 提供多种常见接口,也提供以太网接口,方便连接机载电脑 根据我个人的优势和技术的特点,初步确定四旋翼软硬件如下: MCU+GPS+IMU盒子方案一:元器件 型号MCUSTM32F746ZGT6GPS+Mag3DR GPSAcc+MagLSM303AGRGroL3GD20HAcc+GroLSM6DSM气压计LPS22HB IMU盒子方案一全部采用ST最新的高性能元器件,有现成的驱动,和Pixhawk一样采用双陀螺仪加速度计冗余设计。MCU 采用高性能F746,可以运行复杂算法。 IMU盒子方案二: 元器件 型号AccADXL354GroADXRS642 ×3气压计MS5803 IMU盒子方案二采用ADI高性能惯性传感器和高性能气压计,满足更高性能需求。 飞控软件相关:部分 具体操作系统FreeRTOS文件系统FatFs通信协议Mavlink开发环境Keil+QT协同工作Github开源协议BSD3-clause四旋翼飞控的主板,IMU,元器件和主控板第一代实物截图:过一番探讨,决定第一版硬件采用三部分组成,核心版采用Nucleo F767,主板固定在机架上,IMU做成减震盒子。 主板上接口与硬件:PWM遥控接口,PPM遥控接口,8个电机控制接口,1个PWM用户接口,3DR GPS的接口,SD卡接口,电源管理,Flash,三色LED灯,F450机架接口。 IMU上硬件与接口:LSM6DSM,LPS22HB,LSM303AGR,ICM20608,2W加热电阻,3.3V电源,14pin的排线接口。 IMU上采用了很多冗余器件,例如LSM6DSM与ICM20608功能重合,主要是为了测试性能。说明:EEDrone开源四旋翼从零开始详细的制作步骤,详见“相关文件”超链。
    来自:机器人时间:2017-06-09 四轴 飞控 imu 四旋翼 eedrone
  • 开源匿名四轴、六轴遥控器资料开源(原理图、驱动、程序源码)

    声明:该设计资料来源于匿名科创,设计资料仅供学习参考,不可用途商业用途。本打算提供下购买渠道的,官网好像断货了。可能感兴趣的项目设计:http://www.cirmall.com/circuit/5903/detail?3(开源微型六轴飞行器电路原理图、源代码、APP&上位机)四轴、六轴遥控器实物展示:四轴、六轴遥控器程序源码截图:遥控器原理图截图:驱动截图:
    来自:飞行器时间:2017-04-20 开源 四轴 遥控器 六轴
  • pixhawk的硬件改版,大大降低硬件成本

    本套硬件 ,在保证原来的稳定性的情况下,大大减低了pixhawk2.4原有的硬件成本,本套硬件已经实现了量产,在公司大面积销售,所以大家可以放心制版或者用来进行参考附件内容截图:
    来自:飞行器时间:2017-02-16 四轴 飞行器 pixhawk
销量
92
查看
7851
Uncle_镖

Uncle_镖

资深卖家
固件工程师
参数名 参数值
发布于 2017 年 01 月 22日
更新于 2017 年 01 月 22日
Moore8直播课堂