开启新的征程,邀请您见证ST的蜕变

【特惠季】小马哥最新小四轴,完整资料限时特价开源!

精美元器件欣赏:连接器分立电线外壳(0039012225)

(电赛B题)风力摆控制系统设计(原理图+源代码+设计报告等)

  • (电赛B题)风力摆控制系统设计(原理图+源代码+设计报告等)
  • (电赛B题)风力摆控制系统设计(原理图+源代码+设计报告等)
  • (电赛B题)风力摆控制系统设计(原理图+源代码+设计报告等)
  • (电赛B题)风力摆控制系统设计(原理图+源代码+设计报告等)
  • (电赛B题)风力摆控制系统设计(原理图+源代码+设计报告等)

(电赛B题)风力摆控制系统设计(原理图+源代码+设计报告等)

(电赛B题)风力摆控制系统设计(原理图+源代码+设计报告等)

(电赛B题)风力摆控制系统设计(原理图+源代码+设计报告等)

(电赛B题)风力摆控制系统设计(原理图+源代码+设计报告等)

(电赛B题)风力摆控制系统设计(原理图+源代码+设计报告等)


该设计为本人参加的2015电赛B题——风力摆控制系统

所需主要清单:stm32f103v单片机、mpu6050四轴飞行器、液晶显示屏12864、按键、L298n驱动。

完善程度:90% 除发挥部分其他(10分)未完成,剩余的基本完成。

视频演示:

特别说明:由于关键时期,更换电机。所以设计报告中,与现实作品有一定差距,但并不影响最终效果。(以现实作品为准)

Ps:本人乃大三狗一枚,本学期压力较大,时间较紧。售后问题,可能不如以前,但会尽量解答。所以免费分享此资料。

致逝去的四天三夜电赛(2015/8/12--8/15)——TNT

电路相关文件

电路图文件
STM32F103VCT6.SchDoc
描述:部分电路图,电源稳压部分,万用板自焊
教程
风力摆控制系统 .docx
描述:设计报告
源代码
2015电子设计竞赛完整版.zip
描述:32编写的代码
其他文件
联系方式.txt
描述:QQ联系方式
分享到:
收藏 (42)
电子硬件助手小程序 电子硬件助手小程序

电路城电路折扣劵获取途径:

电路城7~10折折扣劵(全场通用):对本电路进行评分获取;

电路城6折折扣劵(限购≤100元电路):申请成为卖家,上传电路,审核成功后获取。

(版权归TNT所有)

版权声明:电路城所有电路均源于网友上传或网上搜集,供学习和研究使用,其版权归原作者所有,对可以提供充分证据的侵权信息,本站将在确认后24小时内删除。对本电路进行投诉建议,点击投诉本电路反馈给电路城。

使用说明:直接使用附件资料或需要对资料PCB板进行打样的买家,请先核对资料的完整性,如果出现问题,电路城不承担任何经济损失!

换一批 more>>

大家都在看:

继续阅读

  • 双十一特别活动:小马哥RoboFly四轴套件大放价!

    我们不用点赞,不用转发锦鲤,只要你喜欢,只要你需要这个套件,你的差价我们来买单!现在团购价格已经降至290/套,之前购买的的按最终成交价格退差价!活动详情:1、 此次团购套件(原价321.5元)包括价值176.5元的RoboFly四轴散件一套以及价值145元的成品手柄一套,含四轴相关资料;2、 团购初始价格为310元/套: 1-10人参与团购:310/套 11-50人参与团购:290/套 51-100人参与团购:270/套3、 付款价格为310,付款价格与最终团购价格的差价将在活动结束后返回买家支付宝账号,活动结束后注意查收!4、 所有套件将在活动结束后统一寄送,成功参与团购的买家联系管理员(QQ:3457013729),可加入此次团购的技术指导群,小马哥将统一提供技术指导,未成功团购的用户不得加群。5、本次团购活动提供技术支持,但是由于个人基础不同,操作过程不可控等因素,不能确保四轴散件一定能够焊接成功,本次活动的主要还是方便大家在焊接过程中快速学习与进步,所以电路城以及小马哥方不承担四轴焊接失败的后果,请大家知晓!6、团购中的遥控器是成品,成品是为了方便大家快速排除四轴焊接过程中的问题;另外,遥控器不提供pcb文件,只提供原理图和源代码!7、此次团购套件不提供发票!8、活动最终解释权归电路城所有!活动时间:2018年11月5日-2018年11月30日注意:只需要购买四轴散件或者遥控器的可至小马哥淘宝店铺直接购买,不享受本次团购的差价补贴!店铺传送门 小马哥RoboFly四轴介绍:RoboFly是小马哥团队在2018年8月推出的一款完全开源的小四轴。你可以学到什么?这款四轴面向的人群是电子相关专业(包括自动化、电气自动化、电子信息工程、计算机、测控等专业)的大学生,通过一个完整的四轴项目来学习贴片元器件的焊接、PCB设计软件AD的使用、电路基本知识、旋翼型无人机的基本原理、STM32单片机编程与基本使用、飞控算法的实现等。据了解,目前大多数高校的电子专业的课程实训依然是焊接收音机等,单片机课程教的也是单片机,这已经不能满足学生的学习了,学生毕业之后进入企业,大多接触的是贴片元器件(功率器件除外),做产品的时候,硬件工程师必须要具备一定的调试能力,这就对焊接贴片元件的能力提出了要求,所以我们设计了这款四轴飞行器,使用0603、0805这样贴片元件,是练习焊接的好帮手,而且好处在于,焊接练习完了,还可以继续学习STM32,四轴原理,直到把这个四轴飞行器飞起来,在这个过程中,我们也有交流群和学习资料,供大家学习使用。下面是RoboFly四轴飞行器的整体框图、原理图、pcb、实物图源代码的截图,先一睹为快,后面详细介绍。图1:RoboFly四轴飞行器整体框图图2:RoboFly四轴飞行器原理图图3:RoboFly四轴飞行器PCB图图4:RoboFly四轴飞行器PCB 3D俯图图5:RoboFly四轴飞行器PCB 3D侧视图图6:RoboFly四轴飞行器实物图图7:RoboFly四轴飞行器源代码截图制作并开源这套小四轴的初衷有如下几点; 1、初学者需要一款价格低廉、软硬件资料完备、有技术支持的四轴学习平台; 2、以散件形式发售,电路板布局、元器件封装选型要方便焊接组装; 3、四轴所需元器件采购方便、靠谱,最好能提供一站式采购,避免过多邮费、采购周期长、采购到不合格元器件导致学习难以进展。 4、源代码要极其精简、方便入门者能够方便的学习,实现自己的代码; 5、保留一定扩展接口、方便用户自己进行扩展如定高、航迹、巡线等飞行功能。在学习完四轴飞行器之后,这个开源的四轴板子仍然可以作为一个STM32开发学习板使用;RoboFly四轴的基本配置如下:主控芯片:STM32F103C8T6 姿态检测:MPU6050气压计:FBM320无线芯片:SI24R1供电方案:HT7750SA升压+XC6206稳压灯光指示:1个电源指示LED、1个用户编程LED、4个单总线全彩RGB灯电池:600mAh 20C 1S锂离子电池电机:720空心杯桨叶:55mm桨叶桨叶保护罩:相邻轴距65mm机架:PCB一体化机架续航时间:10分钟遥控距离:空旷50mRoboFly四轴原理图各模块简单说明:STM32F103C8T6是ST在2007年发布的一款MCU,截止目前ST已经发布了速度高达400MHz的STM32H7 (这时候一定有人会说600MHz的事,我知道,不用提醒),我自己也是用STM32F1,STM32F4,STN32F7都做过各种各样的四轴,但是这个开源的四轴我还是选择了STM32F103C8T6,主要从三点考虑,一是封装比较大,方便初学者焊接,二是价格低廉,学习成本比较低,三是网上有大量的资料供初学者学习使用。姿态传感器选择MPU6050,主要考虑的也是封装比较大,可以直接使用烙铁焊接,而且价格比较低,资料也很丰富。而且还自带DMP库,可以完成姿态结算后直接把姿态角输出给主控芯片。2016年我们的第一款四轴就是采用DMP库输出姿态角的。气压计使用的是FBM320,对于这款气压计,个人认为性能一般。但是优点就是这个封装和BMP280、SPL06的引脚都是兼容的,方便更换。但是小四轴上放气压计,有一个比较麻烦的地方就是要想办法排除桨叶的风对它的干扰。可以使用海绵等其他东西进行隔离。无线芯片用的是SI24R1,国产的,之所以用这个而不用NRF2401,是因为这个经过我测试,性能也是可以的,引脚完全兼容NRF2401,无线发射可以做到7dB,在发射和接收端都采用陶瓷天线的前提下,可以达到50m的通讯距离。如果加上AP,那达到100米应该没有问题。通过两个低成本的0欧姆电阻对电源进行了单点接地,防止电机回路的电流波动串进射频回路对射频造成干扰。对于供电方案中的先升压再降压的方案,这是我做第一款四轴飞行器的时候发现的,这种1S的锂离子电池,在四个空心杯进行供电的时候,如果四个空心杯电机不带桨叶,也就是说没有负载,那启动是没有问题的。但是如果四个空心杯都带上负载,瞬间提速到满速,就会瞬间把电池输出电压拉低到3V以下,经过我测试甚至低到了2.8V,这时候如果不升压,直接用电池给LDO供电,那LDO就会失效。所以通过升压再降压后给单片机系统供电是一个可行的方案。另一个方案就是在电机启动的时候采用缓慢启动的方式,这样电池的电压就不会瞬间被拉低,但是这样的一个不足之处就是无法让这个小四轴非常暴力,飞起来不够爽快。四个机臂上采用的RGBLED是串行单总线全彩灯,也就意味着只需要占用单片机的一个IO端口,就可以控制这四个灯发出各种各样的颜色。这个灯类似与WS2811,也是通过零一码来实现数据通讯,进而控制灯的颜色的。对于初学者而言,时序往往难以理解,而这个灯可以作为学习时序最简单的一个例程,虽然简单,但是却非常有趣。因为小四轴的尺寸、重量等限制,这版四轴飞行器的电池最好不要超过600mAh,否则电池自身的重量就会成为最大的包袱。而太小的电池则不能提供较长时间的续航。总之我经过测试认为600 mAh容量应该是一个拐点。电池最好带保护板、有一定的安全性能。否则胀饱、失效事小,严重点在炸机的时候可能会爆炸。对于这个四轴最关键的一个组建—空心杯,说出来都是泪啊,做四轴两年,有一年的时间都在寻找合格的空心杯电机。2017年有一款四轴飞行器因为采购的电机侧向震动太大,导致桨叶转动之后产生很大的侧向震动、严重干扰了加速度计,使角度偏差很大,基本不能垂直飞行。一开始把问题锁定在MOS管上、陀螺仪上、原理图与PCB设计上都未能解决问题,后来对原始数据进行FFT变换后发现了干扰的频率点,这才确定是电机的侧向震动引起的。还有一种情况就是同一批次的电机性能差异很大,导致PID调节的输出差异很大,最终会影响MOS管的寿命、电机寿命。空心杯电机使用SI2302这款MOS管进行驱动,这是非常常见的一款MOS管,便宜又好用。但是市面上这个管子假货也比较多。很多人在电机驱动电路上加不加电容、加不加二极管有很大的争议,我经过测试发现,加上电容之后效果很好,而加上二极管的效果则一般。也可能是测试方式不够严谨,回头可以一起讨论这个问题。桨叶选型一定要注意选择平衡性好的桨叶、做工有瑕疵的可能会影响平衡性,在飞行的时候,如果不平衡就会导致侧向震动。初学者在调试四轴的时候,摔下来、失控是很常见的,所以加上桨叶保护罩之后,可以很大程度上减小桨叶、电机报废的概率。如果采用飞控板和机架隔离的方式,就能从一定程度上降低震动的影响,但是这样或许会增加重量及成本,所以我选择了PCB机架,这也是初学者最容易实现的一个方案,但不是唯一的方案。
    来自:飞行器时间:2018-11-05 stm32 pcb 四轴
  • STM32F103_USI8686_MPU6050_HMC5883 WIFI四轴飞行器原理图+PCB文件+测试源码

    Protel 99se 设计的项目工程文件,包括原理图及PCB印制板图,软件测试源码,可用Protel或 Altium Designer(AD)软件打开或修改,都已经制板在实际项目中使用,可作为你产品设计的参考。
    来自:工业控制时间:2018-10-11 stm32f103 mpu6050 hmc5883
  • 小马哥STM32开源RoboFly四轴飞行器原理图、PCB工程、源代码、3D模型文件等全部资料分享

    双十一特别活动:小马哥RoboFly四轴套件大放价!团购入口:http://www.cirmall.com/circuit/10587/details RoboFly是小马哥团队在2018年8月推出的一款完全开源的小四轴。这款四轴面向的人群是电子相关专业(包括自动化、电气自动化、电子信息工程、计算机、测控等专业)的大学生,通过一个完整的四轴项目来学习贴片元器件的焊接、PCB设计软件AD的使用、电路基本知识、旋翼型无人机的基本原理、STM32单片机编程与基本使用、飞控算法的实现等。据了解,目前大多数高校的电子专业的课程实训依然是焊接收音机等,单片机课程教的也是单片机,这已经不能满足学生的学习了,学生毕业之后进入企业,大多接触的是贴片元器件(功率器件除外),做产品的时候,硬件工程师必须要具备一定的调试能力,这就对焊接贴片元件的能力提出了要求,所以我们设计了这款四轴飞行器,使用0603、0805这样贴片元件,是练习焊接的好帮手,而且好处在于,焊接练习完了,还可以继续学习STM32,四轴原理,直到把这个四轴飞行器飞起来,在这个过程中,我们也有交流群和学习资料,供大家学习使用。下面是RoboFly四轴飞行器的整体框图、原理图、pcb、实物图源代码的截图,先一睹为快,后面详细介绍。图1:RoboFly四轴飞行器整体框图图2:RoboFly四轴飞行器原理图图3:RoboFly四轴飞行器PCB图图4:RoboFly四轴飞行器PCB 3D俯图图5:RoboFly四轴飞行器PCB 3D侧视图图6:RoboFly四轴飞行器实物图图7:RoboFly四轴飞行器源代码截图制作并开源这套小四轴的初衷有如下几点; 1、初学者需要一款价格低廉、软硬件资料完备、有技术支持的四轴学习平台; 2、以散件形式发售,电路板布局、元器件封装选型要方便焊接组装; 3、四轴所需元器件采购方便、靠谱,最好能提供一站式采购,避免过多邮费、采购周期长、采购到不合格元器件导致学习难以进展。 4、源代码要极其精简、方便入门者能够方便的学习,实现自己的代码; 5、保留一定扩展接口、方便用户自己进行扩展如定高、航迹、巡线等飞行功能。在学习完四轴飞行器之后,这个开源的四轴板子仍然可以作为一个STM32开发学习板使用;RoboFly四轴的基本配置如下:主控芯片:STM32F103C8T6 姿态检测:MPU6050气压计:FBM320无线芯片:SI24R1供电方案:HT7750SA升压+XC6206稳压灯光指示:1个电源指示LED、1个用户编程LED、4个单总线全彩RGB灯电池:600mAh 20C 1S锂离子电池电机:720空心杯桨叶:55mm桨叶桨叶保护罩:相邻轴距65mm机架:PCB一体化机架续航时间:10分钟遥控距离:空旷50mRoboFly四轴原理图各模块简单说明:STM32F103C8T6是ST在2007年发布的一款MCU,截止目前ST已经发布了速度高达400MHz的STM32H7 (这时候一定有人会说600MHz的事,我知道,不用提醒),我自己也是用STM32F1,STM32F4,STN32F7都做过各种各样的四轴,但是这个开源的四轴我还是选择了STM32F103C8T6,主要从三点考虑,一是封装比较大,方便初学者焊接,二是价格低廉,学习成本比较低,三是网上有大量的资料供初学者学习使用。姿态传感器选择MPU6050,主要考虑的也是封装比较大,可以直接使用烙铁焊接,而且价格比较低,资料也很丰富。而且还自带DMP库,可以完成姿态结算后直接把姿态角输出给主控芯片。2016年我们的第一款四轴就是采用DMP库输出姿态角的。气压计使用的是FBM320,对于这款气压计,个人认为性能一般。但是优点就是这个封装和BMP280、SPL06的引脚都是兼容的,方便更换。但是小四轴上放气压计,有一个比较麻烦的地方就是要想办法排除桨叶的风对它的干扰。可以使用海绵等其他东西进行隔离。无线芯片用的是SI24R1,国产的,之所以用这个而不用NRF2401,是因为这个经过我测试,性能也是可以的,引脚完全兼容NRF2401,无线发射可以做到7dB,在发射和接收端都采用陶瓷天线的前提下,可以达到50m的通讯距离。如果加上AP,那达到100米应该没有问题。通过两个低成本的0欧姆电阻对电源进行了单点接地,防止电机回路的电流波动串进射频回路对射频造成干扰。对于供电方案中的先升压再降压的方案,这是我做第一款四轴飞行器的时候发现的,这种1S的锂离子电池,在四个空心杯进行供电的时候,如果四个空心杯电机不带桨叶,也就是说没有负载,那启动是没有问题的。但是如果四个空心杯都带上负载,瞬间提速到满速,就会瞬间把电池输出电压拉低到3V以下,经过我测试甚至低到了2.8V,这时候如果不升压,直接用电池给LDO供电,那LDO就会失效。所以通过升压再降压后给单片机系统供电是一个可行的方案。另一个方案就是在电机启动的时候采用缓慢启动的方式,这样电池的电压就不会瞬间被拉低,但是这样的一个不足之处就是无法让这个小四轴非常暴力,飞起来不够爽快。四个机臂上采用的RGBLED是串行单总线全彩灯,也就意味着只需要占用单片机的一个IO端口,就可以控制这四个灯发出各种各样的颜色。这个灯类似与WS2811,也是通过零一码来实现数据通讯,进而控制灯的颜色的。对于初学者而言,时序往往难以理解,而这个灯可以作为学习时序最简单的一个例程,虽然简单,但是却非常有趣。因为小四轴的尺寸、重量等限制,这版四轴飞行器的电池最好不要超过600mAh,否则电池自身的重量就会成为最大的包袱。而太小的电池则不能提供较长时间的续航。总之我经过测试认为600 mAh容量应该是一个拐点。电池最好带保护板、有一定的安全性能。否则胀饱、失效事小,严重点在炸机的时候可能会爆炸。对于这个四轴最关键的一个组建—空心杯,说出来都是泪啊,做四轴两年,有一年的时间都在寻找合格的空心杯电机。2017年有一款四轴飞行器因为采购的电机侧向震动太大,导致桨叶转动之后产生很大的侧向震动、严重干扰了加速度计,使角度偏差很大,基本不能垂直飞行。一开始把问题锁定在MOS管上、陀螺仪上、原理图与PCB设计上都未能解决问题,后来对原始数据进行FFT变换后发现了干扰的频率点,这才确定是电机的侧向震动引起的。还有一种情况就是同一批次的电机性能差异很大,导致PID调节的输出差异很大,最终会影响MOS管的寿命、电机寿命。空心杯电机使用SI2302这款MOS管进行驱动,这是非常常见的一款MOS管,便宜又好用。但是市面上这个管子假货也比较多。很多人在电机驱动电路上加不加电容、加不加二极管有很大的争议,我经过测试发现,加上电容之后效果很好,而加上二极管的效果则一般。也可能是测试方式不够严谨,回头可以一起讨论这个问题。桨叶选型一定要注意选择平衡性好的桨叶、做工有瑕疵的可能会影响平衡性,在飞行的时候,如果不平衡就会导致侧向震动。初学者在调试四轴的时候,摔下来、失控是很常见的,所以加上桨叶保护罩之后,可以很大程度上减小桨叶、电机报废的概率。如果采用飞控板和机架隔离的方式,就能从一定程度上降低震动的影响,但是这样或许会增加重量及成本,所以我选择了PCB机架,这也是初学者最容易实现的一个方案,但不是唯一的方案。
    来自:飞行器时间:2018-09-24 单片机 stm32 pcb
  • 2018年电赛C题参考方案-无线充电小车资料打包

    硬件方面,发射端以MSP430为控制核心,MSP430通过IO口控制继电器继而控制无线供电模块的电源。MSP430通过IO接口控制LED发出充电信号以及指示充电进度。接收端不使用芯片,无线供电模块为25F超级电容充电,光敏电阻接收发射端发出的光电信号,通过三极管和晶闸管控制电机的启停,当充电结束后,发出信号,启动电机。软件方面,使用CCS为MSP430编程,程序中通过时钟周期完成计时,完成一分钟计时,之后相应IO口改变为相应电平,进而实现相应功能。
    来自:智能车时间:2018-08-04 电赛 msp430 小车
  • 四轴遥控板电路图 PCB 程序源码开源

    本设计四轴遥控板QCopterRemoteControl 是一个遥控器开发板,四轴飞行器的控制装置,用来与QCopterFlightControl沟通、控制,板上搭载摇杆与传感器,并外接3.5 寸显示荧幕,可以将四轴上的回传回来的信息显示出来,荧幕建立了简单的操作界面,方便使用者设定、观察飞控板,目前遥控器有 QCopterRC 与 QCopterRCs 两种版本,前者使用芯片效能较高、功能多,带高分辨率的荧幕,后者功能较为简洁,制作成本比较低。四轴遥控板实物截图:遥控板系统框图:硬件:控制器  : STM32F407V 100Pin 168MHz DSP FPU显示器  : TFT_3.5-inch ( 3.5" 480*320 ),使用 FSMC 操作传感器  : IMU 6-DOF ( MPU-6050 )储存纪录 : SD 卡,使用 SDIO 操作无线传输 : nRF24L01P + PA + LNA乙太网络 : W5500,使用 SPI 操作外接界面 : 1SPI ( FFC16 ) 、1USB ( Micro ) 、1UART、1I2C/CANPCB 尺寸 : 155 * 60mm设计软件 Altium Designer 13 ( PcbLib use AD PcbLib v0.2 )*** 目前 W5500 尚未完成测试 ...QCopterRC v2.0 预计修改 ( 尚未决定改版时间 ):微控制器改为 LQFP100 的 STM32F42xV 或 STM32F43xV,增加运算速度。无线传输部分改用 nRF51422 传输,以兼容 BLE & ANT+。改成使用 TFT_4.0-inch 800*480 荧幕,增加分辨率及画质。由于改成 4 寸荧幕,所以会修改整体位置,并增减部分输入装置功能或数量,象是按键数等。去除乙太网络功能。开发进程:QCopterRC RemoteControl ( 已完成基本遥控功能,界面完善中... )QCopterRC WaveForm ( 示波器功能 )QCopterRC Bitmap ( Bitmap 档案读取 )附件资料截图:
    来自:飞行器时间:2018-07-31 四轴 遥控器 遥控板
  • 厉害了我的无人机!STM32四轴无人机项目设计

    设计一款基于STM32四轴飞行器,设计四轴飞行器包括IMU姿态解算,自稳控制,定高自动控制等,达到给他人进行稳定二次开发的目的,降低学习无人机门槛,提高无人机在国内的影响力度,让更多的人认识了解无人机学习无人机。 主要器件: STM32F407VGT6 ICM20602 HMC5983 MS5611 0603电阻 0603电容 TPS5430 15uH功率电感。 作品简介: 在传统飞控上,我设计了利用硅胶球连接上下层PCB的方式来实现传感器减震的功能,有效降低了飞机振动对传感器数据产生的噪声。 可以继续利用研发的无人机进行二次开发的利用。比如无人机运载货物,无人机农业。无人机观察。 四轴飞行器具备VTOL(Vertical Take-Off and Landing,垂直起降)飞行器的所有优点,又具备无人机的造价低、可重复性强以及事故代价低等特点,具有广阔的应用前景。它是无人飞行器(UAV)的一种特殊机型,其具有十字排列的四个螺旋桨方便起飞与控制,在低空低速状态,可以在狭小的空间里执行任务。与其他无人机比较,由于结构简单,方便携带且维护成本低。无人自主飞行平台能够自主飞行并完成相应任务,与通用有人飞机相比,其造价低廉,可维护性,使用费用都具有明显优势。在近年来的历次战争中,发挥着重要作用,在民用方面与救灾领域运用前景广阔,例如无人机可在发生灾害后及时实施监控灾情,对救灾和灾害处理产生有益影响。因此对于四轴飞行器的研究具有重大的现实意义。 系统构架图: 硬件部分的描述: STM32F407VGT6作为主控MCU。 电源部分:MCU我采用2M开关频率的TPS62162保证了MCU的电源的稳定性,ICM20602,HMC5983采用3.3V LDO供电,MS5611根据数据手册采用3V LDO稳压芯片进行供电保证芯片数据的低噪声。TJA1050采用5V供电。 传感器部分:ICM20602六轴传感器芯片通过数据滤波处理把三轴陀螺仪数据和三轴加速度数据以及HMC5983三轴磁力计数据,MS5611气压计数据引入EKF进行IMU姿态解算。 扩展存储器:WQ25Q32BV用来存储传感器矫正数据。TF卡用来存储飞机飞行记录数据。 灯光模块:我采用3个SOT23-3封装的MOS管进行开关控制,与MCU隔离电源。 遥控器电路:采用传统的DBUS遥控器反向电路。 材料清单: MCU:STM32F407VGT6 6轴传感器:ICM20602 磁力计传感器:HMC5983 气压计传感器:MS5611 电源稳压芯片:TPS62162 LDO:ME6219C33M5G和ME6219C30M5G 扩展ROM存储器:TF卡和SPI FLASH 作品演示: 【转载自立创社区】
    来自:飞行器时间:2018-04-27 stm32 四轴 飞行器
  • 2015年全国电赛风力摆设计,一等奖作品!

    这是2015年参加全国大学生电子设计竞赛时的写的技术报告以及当时画的主控板,做的题目是是风力摆控制系统,用的是真正的轴流风机!!本风力摆控制系统主要包括单片机控制模块、电源模块、姿态采集模块、风力摆模块、液晶显示模块、上位机以及风力摆机械结构组成。风力摆由一长约 60cm~70cm 的细管上端用万向节 固定在支架上,下方悬挂一组( 2~4 只)轴流风机。位于摆杆上的姿态采集模块采集风力摆当前姿态角度,并反馈给单片机。单片机通过一系列算法和 PID控制来处理反馈回来的数据,而后通过控制 PWM 占空比控制不同位置的风机转速,实现对风力摆的控制。
    来自:电机驱动与控制时间:2018-04-27 电赛 风力摆 全国电赛
  • STC8飞控 毕设/课设/实验室学习 STC官网飞控资料包二次开发

    该设计来源取材于STC官网的开源STC8飞控,传送门:www.stcmcu.com 飞控采用LQFP44封装的STC8A8K64S4A12(*宝 3块多一颗),这是目前stc的新款单片机,也是其主推的,功能比STC15要多和更为强大,具体参数参见官网STC8的数据手册,讲解很详细。 飞控特点: 1、体积十分小巧,只有4*2.5cm。 2、支持外接接收机和商品控 3、4路电机输出、4路PPM输入 4、传感器采用飞控上广泛使用的MPU6050 5、支持夜航灯(视频中看着有大疆的指示灯的感觉)和电池电压测量 。。。 还有的功能,比如组合摇杆校准/解锁等,详见官网资料的PDF说明。 本设计飞控硬件接口和原飞控是一样的,包括飞行方向等设置,直接烧写其固件即可,不需要任何改动。唯一的区别在于供电,不是12V电池直接供电,而是BEC 5V供电,这个一般电调都引出来的。最后放上试飞视频链接,这个飞控挺稳的,很适合初学者/毕设/课设等用途。 视频链接:https://pan.baidu.com/s/1iGDfHlH_S7mdpva3XiV28Q 需要实物的买家:https://item.taobao.com/item.htm?spm=a230r.1.14.16... QQ:2752301152
  • KEA128读取MPU6050角度数据、姿态解算

    KEA128为主控,读取mpu6050六轴传感器数据,并进行姿态解算求出俯仰角
    来自:智能车时间:2018-04-09 mpu6050 姿态解算 kea128
  • 飞思卡尔第十三届KEA128 MPU6050的DMP驱动

    此程序是自己移植的MPU6050驱动到KEA128单片机上,实测可稳定工作。附件内容截图:
    来自:智能车时间:2018-01-17 mpu6050 kea128 dmp
销量
1307
查看
20K
Geekjin

Geekjin

资深卖家
有梦想,那就让他实现!
参数名 参数值
发布于 2015 年 08 月 26日
更新于 2015 年 08 月 26日
Moore8直播课堂